| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinval2.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | joinval2.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | joinval2.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | joinval2.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | joinval2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | joinval2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | joinlem.e | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∨  ) | 
						
							| 8 |  | eqid | ⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 ) | 
						
							| 9 | 8 3 4 5 6 | joindef | ⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∨   ↔  { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 ) ) ) | 
						
							| 10 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 ) )  →  𝐾  ∈  𝑉 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 ) )  →  { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 ) ) | 
						
							| 13 | 1 2 8 10 11 12 | lubeu | ⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 ) )  →  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝜑  →  ( { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 )  →  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | joinval2lem | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 16 | 5 6 15 | syl2anc | ⊢ ( 𝜑  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 17 | 16 | reubidv | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ∃! 𝑥  ∈  𝐵 ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 18 | 14 17 | sylibd | ⊢ ( 𝜑  →  ( { 𝑋 ,  𝑌 }  ∈  dom  ( lub ‘ 𝐾 )  →  ∃! 𝑥  ∈  𝐵 ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 19 | 9 18 | sylbid | ⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∨   →  ∃! 𝑥  ∈  𝐵 ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 20 | 7 19 | mpd | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐵 ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) |