Step |
Hyp |
Ref |
Expression |
1 |
|
joinval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joinval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
joinval2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
joinval2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
joinval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
joinval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
joinlem.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
8 |
1 2 3 4 5 6 7
|
joineu |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
9 |
|
riotasbc |
⊢ ( ∃! 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) → [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
11 |
1 2 3 4 5 6
|
joinval2 |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
12 |
11
|
sbceq1d |
⊢ ( 𝜑 → ( [ ( 𝑋 ∨ 𝑌 ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
13 |
10 12
|
mpbird |
⊢ ( 𝜑 → [ ( 𝑋 ∨ 𝑌 ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
14 |
|
ovex |
⊢ ( 𝑋 ∨ 𝑌 ) ∈ V |
15 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ≤ 𝑥 ↔ 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) ) |
16 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( 𝑌 ≤ 𝑥 ↔ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( 𝑥 ≤ 𝑧 ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ↔ ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
21 |
17 20
|
anbi12d |
⊢ ( 𝑥 = ( 𝑋 ∨ 𝑌 ) → ( ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) ) |
22 |
14 21
|
sbcie |
⊢ ( [ ( 𝑋 ∨ 𝑌 ) / 𝑥 ] ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
23 |
13 22
|
sylib |
⊢ ( 𝜑 → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |