Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinlmuladdmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| joinlmuladdmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| joinlmuladdmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| joinlmuladdmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 ) | ||
| Assertion | joinlmuladdmuld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | joinlmuladdmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | joinlmuladdmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | joinlmuladdmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 ) | |
| 5 | 1 3 2 | adddird | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) ) |
| 6 | 5 4 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 ) |