Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | joinlmuladdmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
joinlmuladdmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
joinlmuladdmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
joinlmuladdmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 ) | ||
Assertion | joinlmuladdmuld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | joinlmuladdmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | joinlmuladdmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | joinlmuladdmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 ) | |
5 | 1 3 2 | adddird | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) ) |
6 | 5 4 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 ) |