Metamath Proof Explorer


Theorem joinlmuladdmuld

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuld.1 ( 𝜑𝐴 ∈ ℂ )
joinlmuladdmuld.2 ( 𝜑𝐵 ∈ ℂ )
joinlmuladdmuld.3 ( 𝜑𝐶 ∈ ℂ )
joinlmuladdmuld.4 ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 )
Assertion joinlmuladdmuld ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 joinlmuladdmuld.1 ( 𝜑𝐴 ∈ ℂ )
2 joinlmuladdmuld.2 ( 𝜑𝐵 ∈ ℂ )
3 joinlmuladdmuld.3 ( 𝜑𝐶 ∈ ℂ )
4 joinlmuladdmuld.4 ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 )
5 1 3 2 adddird ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) )
6 5 4 eqtrd ( 𝜑 → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 )