Step |
Hyp |
Ref |
Expression |
1 |
|
joinval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
joinval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
joinval2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
joinval2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
joinval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
joinval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
8 |
7 3 4 5 6
|
joinval |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
10 |
5 6
|
prssd |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
11 |
1 2 7 9 4 10
|
lubval |
⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
12 |
1 2 3 4 5 6
|
joinval2lem |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
13 |
12
|
riotabidv |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
14 |
5 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
15 |
8 11 14
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |