| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinval2.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | joinval2.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | joinval2.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | joinval2.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | joinval2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | joinval2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ≤  𝑥  ↔  𝑋  ≤  𝑥 ) ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ≤  𝑥  ↔  𝑌  ≤  𝑥 ) ) | 
						
							| 9 | 7 8 | ralprg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ↔  ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 ) ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ≤  𝑧  ↔  𝑋  ≤  𝑧 ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ≤  𝑧  ↔  𝑌  ≤  𝑧 ) ) | 
						
							| 12 | 10 11 | ralprg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  ↔  ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 ) ) ) | 
						
							| 13 | 12 | imbi1d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 15 | 9 14 | anbi12d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ( 𝑋  ≤  𝑥  ∧  𝑌  ≤  𝑥 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) |