| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jplem1.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjnorm2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑢 ∈ 𝐴 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑢 ∈ ℋ → ( 𝑢 ∈ 𝐴 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ) ) |
| 4 |
|
eqeq2 |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = ( normℎ ‘ 𝑢 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 5 |
3 4
|
sylan9bb |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐴 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 6 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 7 |
6
|
eqeq2i |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) |
| 8 |
1
|
pjhcli |
⊢ ( 𝑢 ∈ ℋ → ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ∈ ℋ ) |
| 9 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑢 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ) |
| 11 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) |
| 12 |
8 11
|
syl |
⊢ ( 𝑢 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) |
| 13 |
|
1re |
⊢ 1 ∈ ℝ |
| 14 |
|
0le1 |
⊢ 0 ≤ 1 |
| 15 |
|
sq11 |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 16 |
13 14 15
|
mpanr12 |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 17 |
10 12 16
|
syl2anc |
⊢ ( 𝑢 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 18 |
7 17
|
bitr3id |
⊢ ( 𝑢 ∈ ℋ → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) = 1 ) ) |
| 20 |
5 19
|
bitr4d |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐴 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) ) |