| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jp.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
| 2 |
|
jp.2 |
⊢ 𝐴 ∈ Cℋ |
| 3 |
2
|
jplem1 |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐴 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) ) |
| 4 |
1
|
strlem2 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
| 5 |
2 4
|
ax-mp |
⊢ ( 𝑆 ‘ 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) |
| 6 |
5
|
eqeq1i |
⊢ ( ( 𝑆 ‘ 𝐴 ) = 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐴 ) ‘ 𝑢 ) ) ↑ 2 ) = 1 ) |
| 7 |
3 6
|
bitr4di |
⊢ ( ( 𝑢 ∈ ℋ ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑢 ∈ 𝐴 ↔ ( 𝑆 ‘ 𝐴 ) = 1 ) ) |