Step |
Hyp |
Ref |
Expression |
1 |
|
jumpncnp.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
2 |
|
jumpncnp.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
3 |
|
jumpncnp.3 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
4 |
|
jumpncnp.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
5 |
|
jumpncnp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
6 |
|
jumpncnp.lpt1 |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ) |
7 |
|
jumpncnp.lpt2 |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) ) |
8 |
|
jumpncnp.8 |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) limℂ 𝐵 ) ) |
9 |
|
jumpncnp.9 |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) limℂ 𝐵 ) ) |
10 |
|
jumpncnp.lner |
⊢ ( 𝜑 → 𝐿 ≠ 𝑅 ) |
11 |
1 2 3 4 6 7 8 9 10
|
limclner |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ∅ ) |
12 |
|
ne0i |
⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
13 |
12
|
necon2bi |
⊢ ( ( 𝐹 limℂ 𝐵 ) = ∅ → ¬ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
15 |
14
|
intnand |
⊢ ( 𝜑 → ¬ ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
16 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
17 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
18 |
17
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
19 |
3 18
|
eqtri |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
20 |
17 19
|
cnplimc |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
21 |
16 5 20
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐹 : ℝ ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
22 |
15 21
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐹 ∈ ( ( 𝐽 CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |