Step |
Hyp |
Ref |
Expression |
1 |
|
karden.a |
⊢ 𝐴 ∈ V |
2 |
|
karden.c |
⊢ 𝐶 = { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
3 |
|
karden.d |
⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
4 |
|
breq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴 ) ) |
5 |
1
|
enref |
⊢ 𝐴 ≈ 𝐴 |
6 |
1 4 5
|
ceqsexv2d |
⊢ ∃ 𝑤 𝑤 ≈ 𝐴 |
7 |
|
abn0 |
⊢ ( { 𝑤 ∣ 𝑤 ≈ 𝐴 } ≠ ∅ ↔ ∃ 𝑤 𝑤 ≈ 𝐴 ) |
8 |
6 7
|
mpbir |
⊢ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ≠ ∅ |
9 |
|
scott0 |
⊢ ( { 𝑤 ∣ 𝑤 ≈ 𝐴 } = ∅ ↔ { 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ) |
10 |
9
|
necon3bii |
⊢ ( { 𝑤 ∣ 𝑤 ≈ 𝐴 } ≠ ∅ ↔ { 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ) |
11 |
8 10
|
mpbi |
⊢ { 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ |
12 |
|
rabn0 |
⊢ ( { 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } ≠ ∅ ↔ ∃ 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) |
13 |
11 12
|
mpbi |
⊢ ∃ 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
14 |
|
vex |
⊢ 𝑧 ∈ V |
15 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴 ) ) |
16 |
14 15
|
elab |
⊢ ( 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ↔ 𝑧 ≈ 𝐴 ) |
17 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴 ) ) |
18 |
17
|
ralab |
⊢ ( ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
19 |
16 18
|
anbi12i |
⊢ ( ( 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
20 |
|
simpl |
⊢ ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → 𝑧 ≈ 𝐴 ) |
21 |
20
|
a1i |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → 𝑧 ≈ 𝐴 ) ) |
22 |
2 3
|
eqeq12i |
⊢ ( 𝐶 = 𝐷 ↔ { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ) |
23 |
|
abbi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ↔ { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ) |
24 |
22 23
|
bitr4i |
⊢ ( 𝐶 = 𝐷 ↔ ∀ 𝑥 ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
25 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑧 ) ) |
27 |
26
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
29 |
28
|
albidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
30 |
25 29
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
31 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≈ 𝐵 ↔ 𝑧 ≈ 𝐵 ) ) |
32 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
33 |
32
|
albidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
34 |
31 33
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
35 |
30 34
|
bibi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) ) |
36 |
35
|
spvv |
⊢ ( ∀ 𝑥 ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
37 |
24 36
|
sylbi |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑧 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
38 |
|
simpl |
⊢ ( ( 𝑧 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → 𝑧 ≈ 𝐵 ) |
39 |
37 38
|
syl6bi |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → 𝑧 ≈ 𝐵 ) ) |
40 |
21 39
|
jcad |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → ( 𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵 ) ) ) |
41 |
|
ensym |
⊢ ( 𝑧 ≈ 𝐴 → 𝐴 ≈ 𝑧 ) |
42 |
|
entr |
⊢ ( ( 𝐴 ≈ 𝑧 ∧ 𝑧 ≈ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
43 |
41 42
|
sylan |
⊢ ( ( 𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
44 |
40 43
|
syl6 |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) ) → 𝐴 ≈ 𝐵 ) ) |
45 |
19 44
|
syl5bi |
⊢ ( 𝐶 = 𝐷 → ( ( 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ) → 𝐴 ≈ 𝐵 ) ) |
46 |
45
|
expd |
⊢ ( 𝐶 = 𝐷 → ( 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } → ( ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) → 𝐴 ≈ 𝐵 ) ) ) |
47 |
46
|
rexlimdv |
⊢ ( 𝐶 = 𝐷 → ( ∃ 𝑧 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ∀ 𝑦 ∈ { 𝑤 ∣ 𝑤 ≈ 𝐴 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) → 𝐴 ≈ 𝐵 ) ) |
48 |
13 47
|
mpi |
⊢ ( 𝐶 = 𝐷 → 𝐴 ≈ 𝐵 ) |
49 |
|
enen2 |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵 ) ) |
50 |
|
enen2 |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵 ) ) |
51 |
50
|
imbi1d |
⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
52 |
51
|
albidv |
⊢ ( 𝐴 ≈ 𝐵 → ( ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
53 |
49 52
|
anbi12d |
⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) ) |
54 |
53
|
abbidv |
⊢ ( 𝐴 ≈ 𝐵 → { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐵 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐵 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ) |
55 |
54 2 3
|
3eqtr4g |
⊢ ( 𝐴 ≈ 𝐵 → 𝐶 = 𝐷 ) |
56 |
48 55
|
impbii |
⊢ ( 𝐶 = 𝐷 ↔ 𝐴 ≈ 𝐵 ) |