Metamath Proof Explorer


Theorem kardex

Description: The collection of all sets equinumerous to a set A and having the least possible rank is a set. This is the part of the justification of the definition of kard of Enderton p. 222. (Contributed by NM, 14-Dec-2003)

Ref Expression
Assertion kardex { 𝑥 ∣ ( 𝑥𝐴 ∧ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥 ∈ { 𝑧𝑧𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑧𝑧𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) }
2 vex 𝑥 ∈ V
3 breq1 ( 𝑧 = 𝑥 → ( 𝑧𝐴𝑥𝐴 ) )
4 2 3 elab ( 𝑥 ∈ { 𝑧𝑧𝐴 } ↔ 𝑥𝐴 )
5 breq1 ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
6 5 ralab ( ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) )
7 4 6 anbi12i ( ( 𝑥 ∈ { 𝑧𝑧𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑥𝐴 ∧ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) )
8 7 abbii { 𝑥 ∣ ( 𝑥 ∈ { 𝑧𝑧𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) }
9 1 8 eqtri { 𝑥 ∈ { 𝑧𝑧𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) }
10 scottex { 𝑥 ∈ { 𝑧𝑧𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧𝑧𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V
11 9 10 eqeltrri { 𝑥 ∣ ( 𝑥𝐴 ∧ ∀ 𝑦 ( 𝑦𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V