Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴 ) ) |
4 |
2 3
|
elab |
⊢ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ↔ 𝑥 ≈ 𝐴 ) |
5 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴 ) ) |
6 |
5
|
ralab |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
7 |
4 6
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
8 |
7
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∧ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
9 |
1 8
|
eqtri |
⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
10 |
|
scottex |
⊢ { 𝑥 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ∣ ∀ 𝑦 ∈ { 𝑧 ∣ 𝑧 ≈ 𝐴 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
11 |
9 10
|
eqeltrri |
⊢ { 𝑥 ∣ ( 𝑥 ≈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ≈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V |