Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ V |
2 |
|
eqid |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
3 |
1 2
|
fnmpti |
⊢ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) Fn ℋ |
4 |
|
bracl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
5 |
|
brafn |
⊢ ( 𝐶 ∈ ℋ → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
6 |
|
hfmmval |
⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
8 |
7
|
3impa |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
9 |
8
|
fneq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) Fn ℋ ↔ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) Fn ℋ ) ) |
10 |
3 9
|
mpbiri |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) Fn ℋ ) |
11 |
|
brafn |
⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) |
12 |
|
kbop |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) |
13 |
|
fco |
⊢ ( ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ∧ ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) |
15 |
14
|
3impb |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) |
16 |
15
|
ffnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) Fn ℋ ) |
17 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℋ ) |
18 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐵 ∈ ℋ ) |
19 |
|
braval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐶 ∈ ℋ ) |
22 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
23 |
|
braval |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐶 ) ) |
24 |
21 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐶 ) ) |
25 |
20 24
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) ) |
26 |
|
hicl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) |
27 |
18 17 26
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) |
28 |
20 27
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
29 |
21 5
|
syl |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
30 |
|
hfmval |
⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
31 |
28 29 22 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
32 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
33 |
22 21 32
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
34 |
|
ax-his3 |
⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
35 |
33 18 17 34
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
36 |
12
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) |
37 |
|
fvco3 |
⊢ ( ( ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) ) |
38 |
36 37
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) ) |
39 |
|
kbval |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) |
40 |
18 21 22 39
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) ) |
42 |
|
hvmulcl |
⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) |
43 |
33 18 42
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) |
44 |
|
braval |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
45 |
17 43 44
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
46 |
38 41 45
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
47 |
27 33
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
48 |
35 46 47
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) ) |
49 |
25 31 48
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) ) |
50 |
10 16 49
|
eqfnfvd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ) |