| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bracl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 3 |  | brafn | ⊢ ( 𝐶  ∈   ℋ  →  ( bra ‘ 𝐶 ) :  ℋ ⟶ ℂ ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( bra ‘ 𝐶 ) :  ℋ ⟶ ℂ ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  𝐷  ∈   ℋ ) | 
						
							| 6 |  | hfmval | ⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ∈  ℂ  ∧  ( bra ‘ 𝐶 ) :  ℋ ⟶ ℂ  ∧  𝐷  ∈   ℋ )  →  ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·fn  ( bra ‘ 𝐶 ) ) ‘ 𝐷 )  =  ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·  ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) | 
						
							| 7 | 2 4 5 6 | syl3anc | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·fn  ( bra ‘ 𝐶 ) ) ‘ 𝐷 )  =  ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·  ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  ∧  ( 𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ ) )  →  ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·  ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) )  =  ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 )  ·fn  ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) ) |