Step |
Hyp |
Ref |
Expression |
1 |
|
kbass5 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) = ( ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) ketbra 𝐷 ) ) |
2 |
|
kbval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
4 |
3
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
5 |
4
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) ketbra 𝐷 ) = ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) ) |
6 |
|
hicl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) |
7 |
|
kbmul |
⊢ ( ( ( 𝐶 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
8 |
6 7
|
syl3an1 |
⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
9 |
8
|
3exp |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) |
10 |
9
|
ex |
⊢ ( 𝐶 ∈ ℋ → ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) ) |
11 |
10
|
com13 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℋ → ( 𝐶 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) ) |
12 |
11
|
imp43 |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
13 |
|
bracl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ∈ ℂ ) |
14 |
|
bracnln |
⊢ ( 𝐷 ∈ ℋ → ( bra ‘ 𝐷 ) ∈ ( LinFn ∩ ContFn ) ) |
15 |
|
cnvbramul |
⊢ ( ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ∈ ℂ ∧ ( bra ‘ 𝐷 ) ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) ) |
17 |
|
braval |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐵 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) |
19 |
|
cnvbrabra |
⊢ ( 𝐷 ∈ ℋ → ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) = 𝐷 ) |
20 |
18 19
|
oveqan12d |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
21 |
16 20
|
eqtr2d |
⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) = ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) ) |
22 |
21
|
anasss |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) = ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) ) |
23 |
|
kbass2 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) = ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) |
24 |
23
|
3expb |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) = ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) |
26 |
22 25
|
eqtr2d |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
27 |
26
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
29 |
12 28
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) ) |
30 |
1 5 29
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) = ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) ) |