Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
2 |
|
kbfval |
⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
3 |
1 2
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐵 ∈ ℋ ) |
5 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐶 ∈ ℋ ) |
8 |
|
hvmulcl |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) |
10 |
|
kbfval |
⊢ ( ( 𝐵 ∈ ℋ ∧ ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) |
11 |
4 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
13 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐶 ∈ ℋ ) |
14 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
16 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℂ ) |
17 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐵 ∈ ℋ ) |
18 |
|
ax-hvmulass |
⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
20 |
15 16
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) |
21 |
|
his52 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) |
22 |
16 12 13 21
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) |
23 |
20 22
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) |
25 |
19 24
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) |
26 |
25
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) |
27 |
11 26
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
28 |
3 27
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ) |