| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 2 |  | kbfval | ⊢ ( ( ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  ketbra  𝐶 )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 3 | 1 2 | stoic3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  ketbra  𝐶 )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  𝐵  ∈   ℋ ) | 
						
							| 5 |  | cjcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  𝐶  ∈   ℋ ) | 
						
							| 8 |  | hvmulcl | ⊢ ( ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 )  ∈   ℋ ) | 
						
							| 10 |  | kbfval | ⊢ ( ( 𝐵  ∈   ℋ  ∧  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 )  ∈   ℋ )  →  ( 𝐵  ketbra  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  ·ℎ  𝐵 ) ) ) | 
						
							| 11 | 4 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ketbra  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  ·ℎ  𝐵 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  𝑥  ∈   ℋ ) | 
						
							| 13 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  𝐶  ∈   ℋ ) | 
						
							| 14 |  | hicl | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝑥  ·ih  𝐶 )  ∈  ℂ ) | 
						
							| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  𝐶 )  ∈  ℂ ) | 
						
							| 16 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  𝐵  ∈   ℋ ) | 
						
							| 18 |  | ax-hvmulass | ⊢ ( ( ( 𝑥  ·ih  𝐶 )  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( ( ( 𝑥  ·ih  𝐶 )  ·  𝐴 )  ·ℎ  𝐵 )  =  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) ) | 
						
							| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( ( 𝑥  ·ih  𝐶 )  ·  𝐴 )  ·ℎ  𝐵 )  =  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) ) | 
						
							| 20 | 15 16 | mulcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐶 )  ·  𝐴 )  =  ( 𝐴  ·  ( 𝑥  ·ih  𝐶 ) ) ) | 
						
							| 21 |  | his52 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝐴  ·  ( 𝑥  ·ih  𝐶 ) ) ) | 
						
							| 22 | 16 12 13 21 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝐴  ·  ( 𝑥  ·ih  𝐶 ) ) ) | 
						
							| 23 | 20 22 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐶 )  ·  𝐴 )  =  ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( ( 𝑥  ·ih  𝐶 )  ·  𝐴 )  ·ℎ  𝐵 )  =  ( ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  ·ℎ  𝐵 ) ) | 
						
							| 25 | 19 24 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  ∧  𝑥  ∈   ℋ )  →  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  ·ℎ  𝐵 ) ) | 
						
							| 26 | 25 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  ·ℎ  𝐵 ) ) ) | 
						
							| 27 | 11 26 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐵  ketbra  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ( 𝑥  ·ih  𝐶 )  ·ℎ  ( 𝐴  ·ℎ  𝐵 ) ) ) ) | 
						
							| 28 | 3 27 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·ℎ  𝐵 )  ketbra  𝐶 )  =  ( 𝐵  ketbra  ( ( ∗ ‘ 𝐴 )  ·ℎ  𝐶 ) ) ) |