Metamath Proof Explorer


Theorem kbop

Description: The outer product of two vectors, expressed as | A >. <. B | in Dirac notation, is an operator. (Contributed by NM, 30-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion kbop ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) : ℋ ⟶ ℋ )

Proof

Step Hyp Ref Expression
1 kbfval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) · 𝐴 ) ) )
2 hicl ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ )
3 hvmulcl ( ( ( 𝑥 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) · 𝐴 ) ∈ ℋ )
4 2 3 sylan ( ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) · 𝐴 ) ∈ ℋ )
5 4 an31s ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) · 𝐴 ) ∈ ℋ )
6 1 5 fmpt3d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) : ℋ ⟶ ℋ )