Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
2 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
3 |
1 2
|
eqtrdi |
⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = 1 ) |
4 |
3
|
oveq2d |
⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 𝑥 ·ih 𝐴 ) / 1 ) ) |
5 |
|
hicl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
6 |
5
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
7 |
6
|
div1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) / 1 ) = ( 𝑥 ·ih 𝐴 ) ) |
8 |
4 7
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑥 ·ih 𝐴 ) ) |
9 |
8
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑥 ·ih 𝐴 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℋ ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
13 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
14 |
|
neeq1 |
⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 1 ≠ 0 ) ) |
15 |
13 14
|
mpbiri |
⊢ ( ( normℎ ‘ 𝐴 ) = 1 → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
16 |
|
normne0 |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
17 |
15 16
|
syl5ib |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 1 → 𝐴 ≠ 0ℎ ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0ℎ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ≠ 0ℎ ) |
20 |
|
pjspansn |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
21 |
11 12 19 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
22 |
|
kbval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
23 |
22
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐴 ) ·ℎ 𝐴 ) ) |
25 |
10 21 24
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) |
27 |
|
kbop |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ketbra 𝐴 ) : ℋ ⟶ ℋ ) |
28 |
27
|
anidms |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ketbra 𝐴 ) : ℋ ⟶ ℋ ) |
29 |
28
|
ffnd |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ketbra 𝐴 ) Fn ℋ ) |
30 |
|
spansnch |
⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Cℋ ) |
31 |
|
pjfn |
⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) |
32 |
30 31
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) |
33 |
|
eqfnfv |
⊢ ( ( ( 𝐴 ketbra 𝐴 ) Fn ℋ ∧ ( projℎ ‘ ( span ‘ { 𝐴 } ) ) Fn ℋ ) → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐴 ketbra 𝐴 ) ‘ 𝑥 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
36 |
26 35
|
mpbird |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) = 1 ) → ( 𝐴 ketbra 𝐴 ) = ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ) |