Step |
Hyp |
Ref |
Expression |
1 |
|
keephyp2v.1 |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
keephyp2v.2 |
⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
keephyp2v.3 |
⊢ ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏 ↔ 𝜂 ) ) |
4 |
|
keephyp2v.4 |
⊢ ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂 ↔ 𝜃 ) ) |
5 |
|
keephyp2v.5 |
⊢ 𝜓 |
6 |
|
keephyp2v.6 |
⊢ 𝜏 |
7 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 ) |
8 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
9 |
8 1
|
syl |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
10 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
12 |
11 2
|
syl |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
13 |
9 12
|
bitrd |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
14 |
5 13
|
mpbii |
⊢ ( 𝜑 → 𝜃 ) |
15 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 ) |
16 |
15
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) ) |
17 |
16 3
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜂 ) ) |
18 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 ) |
19 |
18
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
20 |
19 4
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜃 ) ) |
21 |
17 20
|
bitrd |
⊢ ( ¬ 𝜑 → ( 𝜏 ↔ 𝜃 ) ) |
22 |
6 21
|
mpbii |
⊢ ( ¬ 𝜑 → 𝜃 ) |
23 |
14 22
|
pm2.61i |
⊢ 𝜃 |