| Step | Hyp | Ref | Expression | 
						
							| 1 |  | keephyp2v.1 | ⊢ ( 𝐴  =  if ( 𝜑 ,  𝐴 ,  𝐶 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | keephyp2v.2 | ⊢ ( 𝐵  =  if ( 𝜑 ,  𝐵 ,  𝐷 )  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 3 |  | keephyp2v.3 | ⊢ ( 𝐶  =  if ( 𝜑 ,  𝐴 ,  𝐶 )  →  ( 𝜏  ↔  𝜂 ) ) | 
						
							| 4 |  | keephyp2v.4 | ⊢ ( 𝐷  =  if ( 𝜑 ,  𝐵 ,  𝐷 )  →  ( 𝜂  ↔  𝜃 ) ) | 
						
							| 5 |  | keephyp2v.5 | ⊢ 𝜓 | 
						
							| 6 |  | keephyp2v.6 | ⊢ 𝜏 | 
						
							| 7 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐶 )  =  𝐴 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) | 
						
							| 9 | 8 1 | syl | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 10 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐵 ,  𝐷 )  =  𝐵 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝜑  →  𝐵  =  if ( 𝜑 ,  𝐵 ,  𝐷 ) ) | 
						
							| 12 | 11 2 | syl | ⊢ ( 𝜑  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 13 | 9 12 | bitrd | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 14 | 5 13 | mpbii | ⊢ ( 𝜑  →  𝜃 ) | 
						
							| 15 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐶 )  =  𝐶 ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( ¬  𝜑  →  𝐶  =  if ( 𝜑 ,  𝐴 ,  𝐶 ) ) | 
						
							| 17 | 16 3 | syl | ⊢ ( ¬  𝜑  →  ( 𝜏  ↔  𝜂 ) ) | 
						
							| 18 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐵 ,  𝐷 )  =  𝐷 ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( ¬  𝜑  →  𝐷  =  if ( 𝜑 ,  𝐵 ,  𝐷 ) ) | 
						
							| 20 | 19 4 | syl | ⊢ ( ¬  𝜑  →  ( 𝜂  ↔  𝜃 ) ) | 
						
							| 21 | 17 20 | bitrd | ⊢ ( ¬  𝜑  →  ( 𝜏  ↔  𝜃 ) ) | 
						
							| 22 | 6 21 | mpbii | ⊢ ( ¬  𝜑  →  𝜃 ) | 
						
							| 23 | 14 22 | pm2.61i | ⊢ 𝜃 |