Metamath Proof Explorer


Theorem keephyp3v

Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)

Ref Expression
Hypotheses keephyp3v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜌𝜒 ) )
keephyp3v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
keephyp3v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
keephyp3v.4 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
keephyp3v.5 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
keephyp3v.6 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜏 ) )
keephyp3v.7 𝜌
keephyp3v.8 𝜂
Assertion keephyp3v 𝜏

Proof

Step Hyp Ref Expression
1 keephyp3v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜌𝜒 ) )
2 keephyp3v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒𝜃 ) )
3 keephyp3v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃𝜏 ) )
4 keephyp3v.4 ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂𝜁 ) )
5 keephyp3v.5 ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁𝜎 ) )
6 keephyp3v.6 ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎𝜏 ) )
7 keephyp3v.7 𝜌
8 keephyp3v.8 𝜂
9 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 )
10 9 eqcomd ( 𝜑𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) )
11 10 1 syl ( 𝜑 → ( 𝜌𝜒 ) )
12 iftrue ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 )
13 12 eqcomd ( 𝜑𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) )
14 13 2 syl ( 𝜑 → ( 𝜒𝜃 ) )
15 iftrue ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 )
16 15 eqcomd ( 𝜑𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) )
17 16 3 syl ( 𝜑 → ( 𝜃𝜏 ) )
18 11 14 17 3bitrd ( 𝜑 → ( 𝜌𝜏 ) )
19 7 18 mpbii ( 𝜑𝜏 )
20 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 )
21 20 eqcomd ( ¬ 𝜑𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) )
22 21 4 syl ( ¬ 𝜑 → ( 𝜂𝜁 ) )
23 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 )
24 23 eqcomd ( ¬ 𝜑𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) )
25 24 5 syl ( ¬ 𝜑 → ( 𝜁𝜎 ) )
26 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 )
27 26 eqcomd ( ¬ 𝜑𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) )
28 27 6 syl ( ¬ 𝜑 → ( 𝜎𝜏 ) )
29 22 25 28 3bitrd ( ¬ 𝜑 → ( 𝜂𝜏 ) )
30 8 29 mpbii ( ¬ 𝜑𝜏 )
31 19 30 pm2.61i 𝜏