Step |
Hyp |
Ref |
Expression |
1 |
|
kelac2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
2 |
|
kelac2.z |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) |
3 |
|
kelac2.k |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) ∈ Comp ) |
4 |
|
kelac2lem |
⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) |
5 |
|
cmptop |
⊢ ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
6 |
1 4 5
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
7 |
|
uncom |
⊢ ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) = ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) |
8 |
7
|
difeq1i |
⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) |
9 |
|
difun2 |
⊢ ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) |
10 |
8 9
|
eqtri |
⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) |
11 |
|
snex |
⊢ { 𝒫 ∪ 𝑆 } ∈ V |
12 |
|
uniprg |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ { 𝒫 ∪ 𝑆 } ∈ V ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) |
13 |
1 11 12
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) |
14 |
13
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) ) |
15 |
|
incom |
⊢ ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) |
16 |
|
pwuninel |
⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) |
18 |
|
disjsn |
⊢ ( ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ) |
20 |
15 19
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ) |
21 |
|
disj3 |
⊢ ( ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ↔ { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) |
22 |
20 21
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) |
23 |
10 14 22
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = { 𝒫 ∪ 𝑆 } ) |
24 |
|
prex |
⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V |
25 |
|
bastg |
⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
26 |
24 25
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
27 |
11
|
prid2 |
⊢ { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
29 |
26 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
30 |
23 29
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
31 |
|
prid1g |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
32 |
|
elssuni |
⊢ ( 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
33 |
1 31 32
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
34 |
|
unitg |
⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
35 |
24 34
|
ax-mp |
⊢ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
36 |
35
|
eqcomi |
⊢ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
37 |
36
|
iscld2 |
⊢ ( ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ∧ 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
38 |
6 33 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
39 |
30 38
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
40 |
|
f1oi |
⊢ ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 |
41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 ) |
42 |
|
elssuni |
⊢ ( { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
43 |
27 42
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
44 |
|
uniexg |
⊢ ( 𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V ) |
45 |
|
pwexg |
⊢ ( ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V ) |
46 |
|
snidg |
⊢ ( 𝒫 ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) |
47 |
1 44 45 46
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) |
48 |
43 47
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
49 |
48 35
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
50 |
2 6 39 41 49 3
|
kelac1 |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |