| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prex | ⊢ { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  V | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 | 2 | elpr | ⊢ ( 𝑥  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ↔  ( 𝑥  =  𝑆  ∨  𝑥  =  { 𝒫  ∪  𝑆 } ) ) | 
						
							| 4 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 5 | 4 | elpr | ⊢ ( 𝑦  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ↔  ( 𝑦  =  𝑆  ∨  𝑦  =  { 𝒫  ∪  𝑆 } ) ) | 
						
							| 6 |  | eqtr3 | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑦  =  𝑆 )  →  𝑥  =  𝑦 ) | 
						
							| 7 | 6 | orcd | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑦  =  𝑆 )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 8 |  | ineq12 | ⊢ ( ( 𝑥  =  { 𝒫  ∪  𝑆 }  ∧  𝑦  =  𝑆 )  →  ( 𝑥  ∩  𝑦 )  =  ( { 𝒫  ∪  𝑆 }  ∩  𝑆 ) ) | 
						
							| 9 |  | incom | ⊢ ( { 𝒫  ∪  𝑆 }  ∩  𝑆 )  =  ( 𝑆  ∩  { 𝒫  ∪  𝑆 } ) | 
						
							| 10 |  | pwuninel | ⊢ ¬  𝒫  ∪  𝑆  ∈  𝑆 | 
						
							| 11 |  | disjsn | ⊢ ( ( 𝑆  ∩  { 𝒫  ∪  𝑆 } )  =  ∅  ↔  ¬  𝒫  ∪  𝑆  ∈  𝑆 ) | 
						
							| 12 | 10 11 | mpbir | ⊢ ( 𝑆  ∩  { 𝒫  ∪  𝑆 } )  =  ∅ | 
						
							| 13 | 9 12 | eqtri | ⊢ ( { 𝒫  ∪  𝑆 }  ∩  𝑆 )  =  ∅ | 
						
							| 14 | 8 13 | eqtrdi | ⊢ ( ( 𝑥  =  { 𝒫  ∪  𝑆 }  ∧  𝑦  =  𝑆 )  →  ( 𝑥  ∩  𝑦 )  =  ∅ ) | 
						
							| 15 | 14 | olcd | ⊢ ( ( 𝑥  =  { 𝒫  ∪  𝑆 }  ∧  𝑦  =  𝑆 )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 16 |  | ineq12 | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑦  =  { 𝒫  ∪  𝑆 } )  →  ( 𝑥  ∩  𝑦 )  =  ( 𝑆  ∩  { 𝒫  ∪  𝑆 } ) ) | 
						
							| 17 | 16 12 | eqtrdi | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑦  =  { 𝒫  ∪  𝑆 } )  →  ( 𝑥  ∩  𝑦 )  =  ∅ ) | 
						
							| 18 | 17 | olcd | ⊢ ( ( 𝑥  =  𝑆  ∧  𝑦  =  { 𝒫  ∪  𝑆 } )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 19 |  | eqtr3 | ⊢ ( ( 𝑥  =  { 𝒫  ∪  𝑆 }  ∧  𝑦  =  { 𝒫  ∪  𝑆 } )  →  𝑥  =  𝑦 ) | 
						
							| 20 | 19 | orcd | ⊢ ( ( 𝑥  =  { 𝒫  ∪  𝑆 }  ∧  𝑦  =  { 𝒫  ∪  𝑆 } )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 21 | 7 15 18 20 | ccase | ⊢ ( ( ( 𝑥  =  𝑆  ∨  𝑥  =  { 𝒫  ∪  𝑆 } )  ∧  ( 𝑦  =  𝑆  ∨  𝑦  =  { 𝒫  ∪  𝑆 } ) )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 22 | 3 5 21 | syl2anb | ⊢ ( ( 𝑥  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∧  𝑦  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 23 | 22 | rgen2 | ⊢ ∀ 𝑥  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } } ∀ 𝑦  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } } ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) | 
						
							| 24 |  | baspartn | ⊢ ( ( { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  V  ∧  ∀ 𝑥  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } } ∀ 𝑦  ∈  { 𝑆 ,  { 𝒫  ∪  𝑆 } } ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) )  →  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  TopBases ) | 
						
							| 25 | 1 23 24 | mp2an | ⊢ { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  TopBases | 
						
							| 26 |  | tgcl | ⊢ ( { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  TopBases  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Top ) | 
						
							| 27 | 25 26 | mp1i | ⊢ ( 𝑆  ∈  𝑉  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Top ) | 
						
							| 28 |  | prfi | ⊢ { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  Fin | 
						
							| 29 |  | pwfi | ⊢ ( { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  Fin  ↔  𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  Fin ) | 
						
							| 30 | 28 29 | mpbi | ⊢ 𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  Fin | 
						
							| 31 |  | tgdom | ⊢ ( { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  V  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ≼  𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } } ) | 
						
							| 32 | 1 31 | ax-mp | ⊢ ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ≼  𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } } | 
						
							| 33 |  | domfi | ⊢ ( ( 𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } }  ∈  Fin  ∧  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ≼  𝒫  { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Fin ) | 
						
							| 34 | 30 32 33 | mp2an | ⊢ ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Fin | 
						
							| 35 | 34 | a1i | ⊢ ( 𝑆  ∈  𝑉  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Fin ) | 
						
							| 36 | 27 35 | elind | ⊢ ( 𝑆  ∈  𝑉  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  ( Top  ∩  Fin ) ) | 
						
							| 37 |  | fincmp | ⊢ ( ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  ( Top  ∩  Fin )  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Comp ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝑆  ∈  𝑉  →  ( topGen ‘ { 𝑆 ,  { 𝒫  ∪  𝑆 } } )  ∈  Comp ) |