Metamath Proof Explorer


Theorem kercvrlsm

Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses kercvrlsm.u 𝑈 = ( LSubSp ‘ 𝑆 )
kercvrlsm.p = ( LSSum ‘ 𝑆 )
kercvrlsm.z 0 = ( 0g𝑇 )
kercvrlsm.k 𝐾 = ( 𝐹 “ { 0 } )
kercvrlsm.b 𝐵 = ( Base ‘ 𝑆 )
kercvrlsm.f ( 𝜑𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
kercvrlsm.d ( 𝜑𝐷𝑈 )
kercvrlsm.cv ( 𝜑 → ( 𝐹𝐷 ) = ran 𝐹 )
Assertion kercvrlsm ( 𝜑 → ( 𝐾 𝐷 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 kercvrlsm.u 𝑈 = ( LSubSp ‘ 𝑆 )
2 kercvrlsm.p = ( LSSum ‘ 𝑆 )
3 kercvrlsm.z 0 = ( 0g𝑇 )
4 kercvrlsm.k 𝐾 = ( 𝐹 “ { 0 } )
5 kercvrlsm.b 𝐵 = ( Base ‘ 𝑆 )
6 kercvrlsm.f ( 𝜑𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
7 kercvrlsm.d ( 𝜑𝐷𝑈 )
8 kercvrlsm.cv ( 𝜑 → ( 𝐹𝐷 ) = ran 𝐹 )
9 lmhmlmod1 ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod )
10 6 9 syl ( 𝜑𝑆 ∈ LMod )
11 4 3 1 lmhmkerlss ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾𝑈 )
12 6 11 syl ( 𝜑𝐾𝑈 )
13 1 2 lsmcl ( ( 𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈 ) → ( 𝐾 𝐷 ) ∈ 𝑈 )
14 10 12 7 13 syl3anc ( 𝜑 → ( 𝐾 𝐷 ) ∈ 𝑈 )
15 5 1 lssss ( ( 𝐾 𝐷 ) ∈ 𝑈 → ( 𝐾 𝐷 ) ⊆ 𝐵 )
16 14 15 syl ( 𝜑 → ( 𝐾 𝐷 ) ⊆ 𝐵 )
17 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
18 5 17 lmhmf ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
19 6 18 syl ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
20 19 ffnd ( 𝜑𝐹 Fn 𝐵 )
21 fnfvelrn ( ( 𝐹 Fn 𝐵𝑎𝐵 ) → ( 𝐹𝑎 ) ∈ ran 𝐹 )
22 20 21 sylan ( ( 𝜑𝑎𝐵 ) → ( 𝐹𝑎 ) ∈ ran 𝐹 )
23 8 adantr ( ( 𝜑𝑎𝐵 ) → ( 𝐹𝐷 ) = ran 𝐹 )
24 22 23 eleqtrrd ( ( 𝜑𝑎𝐵 ) → ( 𝐹𝑎 ) ∈ ( 𝐹𝐷 ) )
25 20 adantr ( ( 𝜑𝑎𝐵 ) → 𝐹 Fn 𝐵 )
26 5 1 lssss ( 𝐷𝑈𝐷𝐵 )
27 7 26 syl ( 𝜑𝐷𝐵 )
28 27 adantr ( ( 𝜑𝑎𝐵 ) → 𝐷𝐵 )
29 fvelimab ( ( 𝐹 Fn 𝐵𝐷𝐵 ) → ( ( 𝐹𝑎 ) ∈ ( 𝐹𝐷 ) ↔ ∃ 𝑏𝐷 ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) )
30 25 28 29 syl2anc ( ( 𝜑𝑎𝐵 ) → ( ( 𝐹𝑎 ) ∈ ( 𝐹𝐷 ) ↔ ∃ 𝑏𝐷 ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) )
31 24 30 mpbid ( ( 𝜑𝑎𝐵 ) → ∃ 𝑏𝐷 ( 𝐹𝑏 ) = ( 𝐹𝑎 ) )
32 lmodgrp ( 𝑆 ∈ LMod → 𝑆 ∈ Grp )
33 10 32 syl ( 𝜑𝑆 ∈ Grp )
34 33 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → 𝑆 ∈ Grp )
35 simprl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → 𝑎𝐵 )
36 27 sselda ( ( 𝜑𝑏𝐷 ) → 𝑏𝐵 )
37 36 adantrl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → 𝑏𝐵 )
38 eqid ( +g𝑆 ) = ( +g𝑆 )
39 eqid ( -g𝑆 ) = ( -g𝑆 )
40 5 38 39 grpnpcan ( ( 𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵 ) → ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑏 ) = 𝑎 )
41 34 35 37 40 syl3anc ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑏 ) = 𝑎 )
42 41 adantr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑏 ) = 𝑎 )
43 10 ad2antrr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → 𝑆 ∈ LMod )
44 5 1 lssss ( 𝐾𝑈𝐾𝐵 )
45 12 44 syl ( 𝜑𝐾𝐵 )
46 45 ad2antrr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → 𝐾𝐵 )
47 27 ad2antrr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → 𝐷𝐵 )
48 eqcom ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ↔ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) )
49 lmghm ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
50 6 49 syl ( 𝜑𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
51 50 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
52 5 3 4 39 ghmeqker ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎𝐵𝑏𝐵 ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ( 𝑎 ( -g𝑆 ) 𝑏 ) ∈ 𝐾 ) )
53 51 35 37 52 syl3anc ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ( 𝑎 ( -g𝑆 ) 𝑏 ) ∈ 𝐾 ) )
54 48 53 syl5bb ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ↔ ( 𝑎 ( -g𝑆 ) 𝑏 ) ∈ 𝐾 ) )
55 54 biimpa ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → ( 𝑎 ( -g𝑆 ) 𝑏 ) ∈ 𝐾 )
56 simplrr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → 𝑏𝐷 )
57 5 38 2 lsmelvalix ( ( ( 𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵 ) ∧ ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ∈ 𝐾𝑏𝐷 ) ) → ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑏 ) ∈ ( 𝐾 𝐷 ) )
58 43 46 47 55 56 57 syl32anc ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → ( ( 𝑎 ( -g𝑆 ) 𝑏 ) ( +g𝑆 ) 𝑏 ) ∈ ( 𝐾 𝐷 ) )
59 42 58 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑎 ) ) → 𝑎 ∈ ( 𝐾 𝐷 ) )
60 59 ex ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐷 ) ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑎 ∈ ( 𝐾 𝐷 ) ) )
61 60 anassrs ( ( ( 𝜑𝑎𝐵 ) ∧ 𝑏𝐷 ) → ( ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑎 ∈ ( 𝐾 𝐷 ) ) )
62 61 rexlimdva ( ( 𝜑𝑎𝐵 ) → ( ∃ 𝑏𝐷 ( 𝐹𝑏 ) = ( 𝐹𝑎 ) → 𝑎 ∈ ( 𝐾 𝐷 ) ) )
63 31 62 mpd ( ( 𝜑𝑎𝐵 ) → 𝑎 ∈ ( 𝐾 𝐷 ) )
64 16 63 eqelssd ( 𝜑 → ( 𝐾 𝐷 ) = 𝐵 )