Metamath Proof Explorer


Theorem kerf1ghm

Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)

Ref Expression
Hypotheses kerf1ghm.a 𝐴 = ( Base ‘ 𝑅 )
kerf1ghm.b 𝐵 = ( Base ‘ 𝑆 )
kerf1ghm.n 𝑁 = ( 0g𝑅 )
kerf1ghm.1 0 = ( 0g𝑆 )
Assertion kerf1ghm ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 “ { 0 } ) = { 𝑁 } ) )

Proof

Step Hyp Ref Expression
1 kerf1ghm.a 𝐴 = ( Base ‘ 𝑅 )
2 kerf1ghm.b 𝐵 = ( Base ‘ 𝑆 )
3 kerf1ghm.n 𝑁 = ( 0g𝑅 )
4 kerf1ghm.1 0 = ( 0g𝑆 )
5 simpl ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) )
6 f1fn ( 𝐹 : 𝐴1-1𝐵𝐹 Fn 𝐴 )
7 6 adantl ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → 𝐹 Fn 𝐴 )
8 elpreima ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ { 0 } ) ) )
9 7 8 syl ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ { 0 } ) ) )
10 9 biimpa ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ { 0 } ) )
11 10 simpld ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → 𝑥𝐴 )
12 10 simprd ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝐹𝑥 ) ∈ { 0 } )
13 fvex ( 𝐹𝑥 ) ∈ V
14 13 elsn ( ( 𝐹𝑥 ) ∈ { 0 } ↔ ( 𝐹𝑥 ) = 0 )
15 12 14 sylib ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝐹𝑥 ) = 0 )
16 1 2 4 3 f1ghm0to0 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 0𝑥 = 𝑁 ) )
17 16 biimpd ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 0𝑥 = 𝑁 ) )
18 17 3expa ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 0𝑥 = 𝑁 ) )
19 18 imp ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥𝐴 ) ∧ ( 𝐹𝑥 ) = 0 ) → 𝑥 = 𝑁 )
20 5 11 15 19 syl21anc ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → 𝑥 = 𝑁 )
21 20 ex ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) → 𝑥 = 𝑁 ) )
22 velsn ( 𝑥 ∈ { 𝑁 } ↔ 𝑥 = 𝑁 )
23 21 22 syl6ibr ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) → 𝑥 ∈ { 𝑁 } ) )
24 23 ssrdv ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝐹 “ { 0 } ) ⊆ { 𝑁 } )
25 ghmgrp1 ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp )
26 1 3 grpidcl ( 𝑅 ∈ Grp → 𝑁𝐴 )
27 25 26 syl ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁𝐴 )
28 3 4 ghmid ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹𝑁 ) = 0 )
29 fvex ( 𝐹𝑁 ) ∈ V
30 29 elsn ( ( 𝐹𝑁 ) ∈ { 0 } ↔ ( 𝐹𝑁 ) = 0 )
31 28 30 sylibr ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹𝑁 ) ∈ { 0 } )
32 1 2 ghmf ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐴𝐵 )
33 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
34 elpreima ( 𝐹 Fn 𝐴 → ( 𝑁 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑁𝐴 ∧ ( 𝐹𝑁 ) ∈ { 0 } ) ) )
35 32 33 34 3syl ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑁 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑁𝐴 ∧ ( 𝐹𝑁 ) ∈ { 0 } ) ) )
36 27 31 35 mpbir2and ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ ( 𝐹 “ { 0 } ) )
37 36 snssd ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → { 𝑁 } ⊆ ( 𝐹 “ { 0 } ) )
38 37 adantr ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → { 𝑁 } ⊆ ( 𝐹 “ { 0 } ) )
39 24 38 eqssd ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝐹 “ { 0 } ) = { 𝑁 } )
40 32 adantr ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴𝐵 )
41 simpl ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
42 simpr2l ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑥𝐴 )
43 simpr2r ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑦𝐴 )
44 simpr3 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
45 eqid ( 𝐹 “ { 0 } ) = ( 𝐹 “ { 0 } )
46 eqid ( -g𝑅 ) = ( -g𝑅 )
47 1 4 45 46 ghmeqker ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥𝐴𝑦𝐴 ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ↔ ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ ( 𝐹 “ { 0 } ) ) )
48 47 biimpa ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ ( 𝐹 “ { 0 } ) )
49 41 42 43 44 48 syl31anc ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ ( 𝐹 “ { 0 } ) )
50 simpr1 ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝐹 “ { 0 } ) = { 𝑁 } )
51 49 50 eleqtrd ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ { 𝑁 } )
52 ovex ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ V
53 52 elsn ( ( 𝑥 ( -g𝑅 ) 𝑦 ) ∈ { 𝑁 } ↔ ( 𝑥 ( -g𝑅 ) 𝑦 ) = 𝑁 )
54 51 53 sylib ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( 𝑥 ( -g𝑅 ) 𝑦 ) = 𝑁 )
55 41 25 syl ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑅 ∈ Grp )
56 1 3 46 grpsubeq0 ( ( 𝑅 ∈ Grp ∧ 𝑥𝐴𝑦𝐴 ) → ( ( 𝑥 ( -g𝑅 ) 𝑦 ) = 𝑁𝑥 = 𝑦 ) )
57 55 42 43 56 syl3anc ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → ( ( 𝑥 ( -g𝑅 ) 𝑦 ) = 𝑁𝑥 = 𝑦 ) )
58 54 57 mpbid ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) → 𝑥 = 𝑦 )
59 58 3anassrs ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑥 = 𝑦 )
60 59 ex ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
61 60 ralrimivva ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ { 0 } ) = { 𝑁 } ) → ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
62 dff13 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
63 40 61 62 sylanbrc ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴1-1𝐵 )
64 39 63 impbida ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 “ { 0 } ) = { 𝑁 } ) )