Step |
Hyp |
Ref |
Expression |
1 |
|
kerf1ghm.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
2 |
|
kerf1ghm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
kerf1ghm.n |
⊢ 𝑁 = ( 0g ‘ 𝑅 ) |
4 |
|
kerf1ghm.1 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
simpl |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
6 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
8 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) |
11 |
10
|
simpld |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
12 |
10
|
simprd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
13 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
14 |
13
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
15 |
12 14
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
16 |
1 2 4 3
|
f1ghm0to0 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
18 |
17
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
19 |
18
|
imp |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → 𝑥 = 𝑁 ) |
20 |
5 11 15 19
|
syl21anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → 𝑥 = 𝑁 ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) → 𝑥 = 𝑁 ) ) |
22 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑁 } ↔ 𝑥 = 𝑁 ) |
23 |
21 22
|
syl6ibr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) → 𝑥 ∈ { 𝑁 } ) ) |
24 |
23
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ { 𝑁 } ) |
25 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) |
26 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 𝑁 ∈ 𝐴 ) |
27 |
25 26
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ 𝐴 ) |
28 |
3 4
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 𝑁 ) = 0 ) |
29 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑁 ) ∈ V |
30 |
29
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑁 ) = 0 ) |
31 |
28 30
|
sylibr |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) |
32 |
1 2
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
33 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
34 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) ) ) |
35 |
32 33 34
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) ) ) |
36 |
27 31 35
|
mpbir2and |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
37 |
36
|
snssd |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → { 𝑁 } ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → { 𝑁 } ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
39 |
24 38
|
eqssd |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) |
40 |
32
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
41 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
42 |
|
simpr2l |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) |
43 |
|
simpr2r |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) |
44 |
|
simpr3 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
45 |
|
eqid |
⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) |
46 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
47 |
1 4 45 46
|
ghmeqker |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
48 |
47
|
biimpa |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
49 |
41 42 43 44 48
|
syl31anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
50 |
|
simpr1 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) |
51 |
49 50
|
eleqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ { 𝑁 } ) |
52 |
|
ovex |
⊢ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ V |
53 |
52
|
elsn |
⊢ ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ { 𝑁 } ↔ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ) |
54 |
51 53
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ) |
55 |
41 25
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑅 ∈ Grp ) |
56 |
1 3 46
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ↔ 𝑥 = 𝑦 ) ) |
57 |
55 42 43 56
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ↔ 𝑥 = 𝑦 ) ) |
58 |
54 57
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
59 |
58
|
3anassrs |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
60 |
59
|
ex |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
61 |
60
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
62 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
63 |
40 61 62
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
64 |
39 63
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ) |