Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kerlidl.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| kerlidl.1 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | kerlidl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝐼 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | kerlidl.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| 2 | kerlidl.1 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 3 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 4 | eqid | ⊢ ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 ) | |
| 5 | 4 2 | lidl0 | ⊢ ( 𝑆 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑆 ) ) | 
| 6 | 3 5 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → { 0 } ∈ ( LIdeal ‘ 𝑆 ) ) | 
| 7 | 1 | rhmpreimaidl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ { 0 } ∈ ( LIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝐼 ) | 
| 8 | 6 7 | mpdan | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝐼 ) |