| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cntop1 | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top )  | 
						
						
							| 2 | 
							
								
							 | 
							toptopon2 | 
							⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							kgentopon | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  →  ( 𝑘Gen ‘ 𝐽 )  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝑘Gen ‘ 𝐽 )  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							kgenss | 
							⊢ ( 𝐽  ∈  Top  →  𝐽  ⊆  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							syl | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ⊆  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 9 | 
							
								8
							 | 
							cnss1 | 
							⊢ ( ( ( 𝑘Gen ‘ 𝐽 )  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐽  ⊆  ( 𝑘Gen ‘ 𝐽 ) )  →  ( 𝐽  Cn  𝐾 )  ⊆  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 ) )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							syl2anc | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝐽  Cn  𝐾 )  ⊆  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							kgenf | 
							⊢ 𝑘Gen : Top ⟶ Top  | 
						
						
							| 12 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑘Gen : Top ⟶ Top  →  𝑘Gen  Fn  Top )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ax-mp | 
							⊢ 𝑘Gen  Fn  Top  | 
						
						
							| 14 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝑘Gen  Fn  Top  ∧  𝐽  ∈  Top )  →  ( 𝑘Gen ‘ 𝐽 )  ∈  ran  𝑘Gen )  | 
						
						
							| 15 | 
							
								13 1 14
							 | 
							sylancr | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝑘Gen ‘ 𝐽 )  ∈  ran  𝑘Gen )  | 
						
						
							| 16 | 
							
								
							 | 
							cntop2 | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top )  | 
						
						
							| 17 | 
							
								
							 | 
							kgencn3 | 
							⊢ ( ( ( 𝑘Gen ‘ 𝐽 )  ∈  ran  𝑘Gen  ∧  𝐾  ∈  Top )  →  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 )  =  ( ( 𝑘Gen ‘ 𝐽 )  Cn  ( 𝑘Gen ‘ 𝐾 ) ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							syl2anc | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( ( 𝑘Gen ‘ 𝐽 )  Cn  𝐾 )  =  ( ( 𝑘Gen ‘ 𝐽 )  Cn  ( 𝑘Gen ‘ 𝐾 ) ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							sseqtrd | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ( 𝐽  Cn  𝐾 )  ⊆  ( ( 𝑘Gen ‘ 𝐽 )  Cn  ( 𝑘Gen ‘ 𝐾 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							id | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							sseldd | 
							⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹  ∈  ( ( 𝑘Gen ‘ 𝐽 )  Cn  ( 𝑘Gen ‘ 𝐾 ) ) )  |