| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kgencn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) ) |
| 2 |
|
rncmp |
⊢ ( ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) → ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) |
| 3 |
2
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) |
| 4 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) |
| 5 |
|
eqid |
⊢ ∪ 𝑧 = ∪ 𝑧 |
| 6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 7 |
5 6
|
cnf |
⊢ ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) → 𝑔 : ∪ 𝑧 ⟶ ∪ 𝐽 ) |
| 8 |
|
frn |
⊢ ( 𝑔 : ∪ 𝑧 ⟶ ∪ 𝐽 → ran 𝑔 ⊆ ∪ 𝐽 ) |
| 9 |
4 7 8
|
3syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ ∪ 𝐽 ) |
| 10 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 11 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 12 |
9 11
|
sseqtrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ 𝑋 ) |
| 13 |
|
vex |
⊢ 𝑔 ∈ V |
| 14 |
13
|
rnex |
⊢ ran 𝑔 ∈ V |
| 15 |
14
|
elpw |
⊢ ( ran 𝑔 ∈ 𝒫 𝑋 ↔ ran 𝑔 ⊆ 𝑋 ) |
| 16 |
12 15
|
sylibr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ∈ 𝒫 𝑋 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑘 = ran 𝑔 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t ran 𝑔 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t ran 𝑔 ) ∈ Comp ) ) |
| 19 |
|
reseq2 |
⊢ ( 𝑘 = ran 𝑔 → ( 𝐹 ↾ 𝑘 ) = ( 𝐹 ↾ ran 𝑔 ) ) |
| 20 |
17
|
oveq1d |
⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) = ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) |
| 21 |
19 20
|
eleq12d |
⊢ ( 𝑘 = ran 𝑔 → ( ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑘 = ran 𝑔 → ( ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ↔ ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 23 |
22
|
rspcv |
⊢ ( ran 𝑔 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 24 |
16 23
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( ( 𝐽 ↾t ran 𝑔 ) ∈ Comp → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) ) |
| 25 |
3 24
|
mpid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) ) |
| 26 |
|
simplll |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 27 |
|
ssidd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ran 𝑔 ⊆ ran 𝑔 ) |
| 28 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran 𝑔 ⊆ ran 𝑔 ∧ ran 𝑔 ⊆ 𝑋 ) → ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ↔ 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) ) |
| 29 |
26 27 12 28
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ↔ 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) ) |
| 30 |
4 29
|
mpbid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ) |
| 31 |
|
cnco |
⊢ ( ( 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) ∧ ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑔 ∈ ( 𝑧 Cn ( 𝐽 ↾t ran 𝑔 ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 33 |
30 32
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 34 |
|
ssid |
⊢ ran 𝑔 ⊆ ran 𝑔 |
| 35 |
|
cores |
⊢ ( ran 𝑔 ⊆ ran 𝑔 → ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) |
| 36 |
34 35
|
ax-mp |
⊢ ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) |
| 37 |
36
|
eleq1i |
⊢ ( ( ( 𝐹 ↾ ran 𝑔 ) ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) |
| 38 |
33 37
|
imbitrdi |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ( 𝐹 ↾ ran 𝑔 ) ∈ ( ( 𝐽 ↾t ran 𝑔 ) Cn 𝐾 ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 39 |
25 38
|
syld |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑧 ∈ Comp ∧ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ) ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 40 |
39
|
ralrimdvva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) → ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 41 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( 𝑧 Cn 𝐽 ) = ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( 𝑧 Cn 𝐾 ) = ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) |
| 43 |
42
|
eleq2d |
⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 44 |
41 43
|
raleqbidv |
⊢ ( 𝑧 = ( 𝐽 ↾t 𝑘 ) → ( ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ↔ ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 45 |
44
|
rspcv |
⊢ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 46 |
|
elpwi |
⊢ ( 𝑘 ∈ 𝒫 𝑋 → 𝑘 ⊆ 𝑋 ) |
| 47 |
46
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑘 ⊆ 𝑋 ) |
| 48 |
47
|
resabs1d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) = ( I ↾ 𝑘 ) ) |
| 49 |
|
idcn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 50 |
49
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 51 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 52 |
47 51
|
sseqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → 𝑘 ⊆ ∪ 𝐽 ) |
| 53 |
6
|
cnrest |
⊢ ( ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑘 ⊆ ∪ 𝐽 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 54 |
50 52 53
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( I ↾ 𝑋 ) ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 55 |
48 54
|
eqeltrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( I ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ) |
| 56 |
|
coeq2 |
⊢ ( 𝑔 = ( I ↾ 𝑘 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑔 = ( I ↾ 𝑘 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 58 |
57
|
rspcv |
⊢ ( ( I ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 59 |
55 58
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 60 |
|
coires1 |
⊢ ( 𝐹 ∘ ( I ↾ 𝑘 ) ) = ( 𝐹 ↾ 𝑘 ) |
| 61 |
60
|
eleq1i |
⊢ ( ( 𝐹 ∘ ( I ↾ 𝑘 ) ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) |
| 62 |
59 61
|
imbitrdi |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑔 ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) |
| 63 |
45 62
|
syl9r |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 64 |
63
|
com23 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑘 ∈ 𝒫 𝑋 ) → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 65 |
64
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) → ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ) |
| 66 |
40 65
|
impbid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ↔ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) |
| 67 |
66
|
pm5.32da |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐹 ↾ 𝑘 ) ∈ ( ( 𝐽 ↾t 𝑘 ) Cn 𝐾 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) ) |
| 68 |
1 67
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑘Gen ‘ 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ Comp ∀ 𝑔 ∈ ( 𝑧 Cn 𝐽 ) ( 𝐹 ∘ 𝑔 ) ∈ ( 𝑧 Cn 𝐾 ) ) ) ) |