Step |
Hyp |
Ref |
Expression |
1 |
|
vuniex |
⊢ ∪ 𝑗 ∈ V |
2 |
1
|
pwex |
⊢ 𝒫 ∪ 𝑗 ∈ V |
3 |
2
|
rabex |
⊢ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ∈ V |
4 |
3
|
a1i |
⊢ ( ( ⊤ ∧ 𝑗 ∈ Top ) → { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ∈ V ) |
5 |
|
df-kgen |
⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) |
6 |
5
|
a1i |
⊢ ( ⊤ → 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) ) |
7 |
|
kgenftop |
⊢ ( 𝑥 ∈ Top → ( 𝑘Gen ‘ 𝑥 ) ∈ Top ) |
8 |
7
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ Top ) → ( 𝑘Gen ‘ 𝑥 ) ∈ Top ) |
9 |
4 6 8
|
fmpt2d |
⊢ ( ⊤ → 𝑘Gen : Top ⟶ Top ) |
10 |
9
|
mptru |
⊢ 𝑘Gen : Top ⟶ Top |