| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vuniex | ⊢ ∪  𝑗  ∈  V | 
						
							| 2 | 1 | pwex | ⊢ 𝒫  ∪  𝑗  ∈  V | 
						
							| 3 | 2 | rabex | ⊢ { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ∀ 𝑘  ∈  𝒫  ∪  𝑗 ( ( 𝑗  ↾t  𝑘 )  ∈  Comp  →  ( 𝑥  ∩  𝑘 )  ∈  ( 𝑗  ↾t  𝑘 ) ) }  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( ( ⊤  ∧  𝑗  ∈  Top )  →  { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ∀ 𝑘  ∈  𝒫  ∪  𝑗 ( ( 𝑗  ↾t  𝑘 )  ∈  Comp  →  ( 𝑥  ∩  𝑘 )  ∈  ( 𝑗  ↾t  𝑘 ) ) }  ∈  V ) | 
						
							| 5 |  | df-kgen | ⊢ 𝑘Gen  =  ( 𝑗  ∈  Top  ↦  { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ∀ 𝑘  ∈  𝒫  ∪  𝑗 ( ( 𝑗  ↾t  𝑘 )  ∈  Comp  →  ( 𝑥  ∩  𝑘 )  ∈  ( 𝑗  ↾t  𝑘 ) ) } ) | 
						
							| 6 | 5 | a1i | ⊢ ( ⊤  →  𝑘Gen  =  ( 𝑗  ∈  Top  ↦  { 𝑥  ∈  𝒫  ∪  𝑗  ∣  ∀ 𝑘  ∈  𝒫  ∪  𝑗 ( ( 𝑗  ↾t  𝑘 )  ∈  Comp  →  ( 𝑥  ∩  𝑘 )  ∈  ( 𝑗  ↾t  𝑘 ) ) } ) ) | 
						
							| 7 |  | kgenftop | ⊢ ( 𝑥  ∈  Top  →  ( 𝑘Gen ‘ 𝑥 )  ∈  Top ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  Top )  →  ( 𝑘Gen ‘ 𝑥 )  ∈  Top ) | 
						
							| 9 | 4 6 8 | fmpt2d | ⊢ ( ⊤  →  𝑘Gen : Top ⟶ Top ) | 
						
							| 10 | 9 | mptru | ⊢ 𝑘Gen : Top ⟶ Top |