Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | kgenftop | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
2 | kgentopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
3 | 1 2 | sylbi | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
4 | topontop | ⊢ ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) | |
5 | 3 4 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) |