Metamath Proof Explorer


Theorem kgenftop

Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenftop ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top )

Proof

Step Hyp Ref Expression
1 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
2 kgentopon ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝐽 ) )
3 1 2 sylbi ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝐽 ) )
4 topontop ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ Top )
5 3 4 syl ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top )