Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenftop | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 2 | kgentopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | 
| 4 | topontop | ⊢ ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) |