Step |
Hyp |
Ref |
Expression |
1 |
|
kgenf |
⊢ 𝑘Gen : Top ⟶ Top |
2 |
|
ffn |
⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) |
3 |
|
fvelrnb |
⊢ ( 𝑘Gen Fn Top → ( 𝐽 ∈ ran 𝑘Gen ↔ ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) |
5 |
|
toptopon2 |
⊢ ( 𝑗 ∈ Top ↔ 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
6 |
|
kgentopon |
⊢ ( 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
7 |
5 6
|
sylbi |
⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
8 |
|
kgentopon |
⊢ ( ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
10 |
|
toponss |
⊢ ( ( ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ⊆ ∪ 𝑗 ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ⊆ ∪ 𝑗 ) |
12 |
|
simplr |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) |
13 |
|
kgencmp2 |
⊢ ( 𝑗 ∈ Top → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp ↔ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) ) |
14 |
13
|
biimpa |
⊢ ( ( 𝑗 ∈ Top ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) |
15 |
14
|
ad2ant2rl |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) |
16 |
|
kgeni |
⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∧ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) → ( 𝑥 ∩ 𝑘 ) ∈ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
17 |
12 15 16
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ 𝑘 ) ∈ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
18 |
|
kgencmp |
⊢ ( ( 𝑗 ∈ Top ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) → ( 𝑗 ↾t 𝑘 ) = ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
19 |
18
|
ad2ant2rl |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑗 ↾t 𝑘 ) = ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
20 |
17 19
|
eleqtrrd |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) |
21 |
20
|
expr |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑗 ) → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) |
22 |
21
|
ralrimiva |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) |
23 |
|
simpl |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑗 ∈ Top ) |
24 |
23 5
|
sylib |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
25 |
|
elkgen |
⊢ ( 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑥 ⊆ ∪ 𝑗 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑥 ⊆ ∪ 𝑗 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
27 |
11 22 26
|
mpbir2and |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ) |
28 |
27
|
ex |
⊢ ( 𝑗 ∈ Top → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ) ) |
29 |
28
|
ssrdv |
⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ⊆ ( 𝑘Gen ‘ 𝑗 ) ) |
30 |
|
fveq2 |
⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) = ( 𝑘Gen ‘ 𝐽 ) ) |
31 |
|
id |
⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) |
32 |
30 31
|
sseq12d |
⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ⊆ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
33 |
29 32
|
syl5ibcom |
⊢ ( 𝑗 ∈ Top → ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
35 |
4 34
|
sylbi |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
36 |
|
kgentop |
⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) |
37 |
|
kgenss |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
38 |
36 37
|
syl |
⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
39 |
35 38
|
eqssd |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |