Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kgenuni.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | kgenuni | ⊢ ( 𝐽 ∈ Top → 𝑋 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenuni.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 | kgentopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
4 | 2 3 | sylbi | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) ) |
5 | toponuni | ⊢ ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐽 ∈ Top → 𝑋 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |