Metamath Proof Explorer


Theorem kgenuni

Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis kgenuni.1 𝑋 = 𝐽
Assertion kgenuni ( 𝐽 ∈ Top → 𝑋 = ( 𝑘Gen ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 kgenuni.1 𝑋 = 𝐽
2 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 kgentopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) )
4 2 3 sylbi ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) )
5 toponuni ( ( 𝑘Gen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ( 𝑘Gen ‘ 𝐽 ) )
6 4 5 syl ( 𝐽 ∈ Top → 𝑋 = ( 𝑘Gen ‘ 𝐽 ) )