Step |
Hyp |
Ref |
Expression |
1 |
|
df-kgen |
⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) |
2 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
3 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
4 |
3
|
eqcomd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝐽 = 𝑋 ) |
5 |
2 4
|
sylan9eqr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
6 |
5
|
pweqd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
7 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑘 ) = ( 𝐽 ↾t 𝑘 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp ↔ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) |
9 |
7
|
eleq2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ↔ ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
12 |
6 11
|
raleqbidv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
13 |
6 12
|
rabeqbidv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) |
14 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
15 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
16 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
17 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ∈ V ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ∈ V ) |
19 |
1 13 14 18
|
fvmptd2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) |