Metamath Proof Explorer


Theorem kmlem10

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 𝐴 = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
Assertion kmlem10 ( ∀ ( ∀ 𝑧𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧 𝜑 ) → ∃ 𝑦𝑧𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 kmlem9.1 𝐴 = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
2 1 kmlem9 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ )
3 vex 𝑥 ∈ V
4 3 abrexex { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) } ∈ V
5 1 4 eqeltri 𝐴 ∈ V
6 raleq ( = 𝐴 → ( ∀ 𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ↔ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) )
7 6 raleqbi1dv ( = 𝐴 → ( ∀ 𝑧𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ↔ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) )
8 raleq ( = 𝐴 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑧𝐴 𝜑 ) )
9 8 exbidv ( = 𝐴 → ( ∃ 𝑦𝑧 𝜑 ↔ ∃ 𝑦𝑧𝐴 𝜑 ) )
10 7 9 imbi12d ( = 𝐴 → ( ( ∀ 𝑧𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧 𝜑 ) ↔ ( ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧𝐴 𝜑 ) ) )
11 5 10 spcv ( ∀ ( ∀ 𝑧𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧 𝜑 ) → ( ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧𝐴 𝜑 ) )
12 2 11 mpi ( ∀ ( ∀ 𝑧𝑤 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) → ∃ 𝑦𝑧 𝜑 ) → ∃ 𝑦𝑧𝐴 𝜑 )