Step |
Hyp |
Ref |
Expression |
1 |
|
kmlem9.1 |
⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
2 |
1
|
kmlem9 |
⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
3
|
abrexex |
⊢ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ∈ V |
5 |
1 4
|
eqeltri |
⊢ 𝐴 ∈ V |
6 |
|
raleq |
⊢ ( ℎ = 𝐴 → ( ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
7 |
6
|
raleqbi1dv |
⊢ ( ℎ = 𝐴 → ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
8 |
|
raleq |
⊢ ( ℎ = 𝐴 → ( ∀ 𝑧 ∈ ℎ 𝜑 ↔ ∀ 𝑧 ∈ 𝐴 𝜑 ) ) |
9 |
8
|
exbidv |
⊢ ( ℎ = 𝐴 → ( ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) |
10 |
7 9
|
imbi12d |
⊢ ( ℎ = 𝐴 → ( ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) ) |
11 |
5 10
|
spcv |
⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) |
12 |
2 11
|
mpi |
⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) |