Metamath Proof Explorer


Theorem kmlem11

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 𝐴 = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
Assertion kmlem11 ( 𝑧𝑥 → ( 𝑧 𝐴 ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )

Proof

Step Hyp Ref Expression
1 kmlem9.1 𝐴 = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
2 1 unieqi 𝐴 = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
3 vex 𝑡 ∈ V
4 3 difexi ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ∈ V
5 4 dfiun2 𝑡𝑥 ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) = { 𝑢 ∣ ∃ 𝑡𝑥 𝑢 = ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) }
6 2 5 eqtr4i 𝐴 = 𝑡𝑥 ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) )
7 6 ineq2i ( 𝑧 𝐴 ) = ( 𝑧 𝑡𝑥 ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) )
8 iunin2 𝑡𝑥 ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 𝑡𝑥 ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) )
9 7 8 eqtr4i ( 𝑧 𝐴 ) = 𝑡𝑥 ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) )
10 undif2 ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) = ( { 𝑧 } ∪ 𝑥 )
11 snssi ( 𝑧𝑥 → { 𝑧 } ⊆ 𝑥 )
12 ssequn1 ( { 𝑧 } ⊆ 𝑥 ↔ ( { 𝑧 } ∪ 𝑥 ) = 𝑥 )
13 11 12 sylib ( 𝑧𝑥 → ( { 𝑧 } ∪ 𝑥 ) = 𝑥 )
14 10 13 syl5req ( 𝑧𝑥𝑥 = ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) )
15 14 iuneq1d ( 𝑧𝑥 𝑡𝑥 ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) )
16 iunxun 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) )
17 vex 𝑧 ∈ V
18 difeq1 ( 𝑡 = 𝑧 → ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ( 𝑥 ∖ { 𝑡 } ) ) )
19 sneq ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } )
20 19 difeq2d ( 𝑡 = 𝑧 → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) )
21 20 unieqd ( 𝑡 = 𝑧 ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) )
22 21 difeq2d ( 𝑡 = 𝑧 → ( 𝑧 ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )
23 18 22 eqtrd ( 𝑡 = 𝑧 → ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )
24 23 ineq2d ( 𝑡 = 𝑧 → ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) )
25 17 24 iunxsn 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )
26 25 uneq1i ( 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) )
27 16 26 eqtri 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) )
28 eldifsni ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → 𝑡𝑧 )
29 incom ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 )
30 kmlem4 ( ( 𝑧𝑥𝑡𝑧 ) → ( ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 ) = ∅ )
31 29 30 syl5eq ( ( 𝑧𝑥𝑡𝑧 ) → ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ )
32 31 ex ( 𝑧𝑥 → ( 𝑡𝑧 → ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) )
33 28 32 syl5 ( 𝑧𝑥 → ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) )
34 33 ralrimiv ( 𝑧𝑥 → ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ )
35 iuneq2 ( ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ → 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ )
36 34 35 syl ( 𝑧𝑥 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ )
37 iun0 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ = ∅
38 36 37 eqtrdi ( 𝑧𝑥 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ )
39 38 uneq2d ( 𝑧𝑥 → ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) )
40 27 39 syl5eq ( 𝑧𝑥 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) )
41 15 40 eqtrd ( 𝑧𝑥 𝑡𝑥 ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) )
42 un0 ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )
43 indif ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) )
44 42 43 eqtri ( ( 𝑧 ∩ ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) )
45 41 44 eqtrdi ( 𝑧𝑥 𝑡𝑥 ( 𝑧 ∩ ( 𝑡 ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )
46 9 45 syl5eq ( 𝑧𝑥 → ( 𝑧 𝐴 ) = ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) )