Step |
Hyp |
Ref |
Expression |
1 |
|
kmlem9.1 |
⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
2 |
1
|
unieqi |
⊢ ∪ 𝐴 = ∪ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
3 |
|
vex |
⊢ 𝑡 ∈ V |
4 |
3
|
difexi |
⊢ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∈ V |
5 |
4
|
dfiun2 |
⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ∪ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
6 |
2 5
|
eqtr4i |
⊢ ∪ 𝐴 = ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) |
7 |
6
|
ineq2i |
⊢ ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∩ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
8 |
|
iunin2 |
⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
9 |
7 8
|
eqtr4i |
⊢ ( 𝑧 ∩ ∪ 𝐴 ) = ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
10 |
|
undif2 |
⊢ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) = ( { 𝑧 } ∪ 𝑥 ) |
11 |
|
snssi |
⊢ ( 𝑧 ∈ 𝑥 → { 𝑧 } ⊆ 𝑥 ) |
12 |
|
ssequn1 |
⊢ ( { 𝑧 } ⊆ 𝑥 ↔ ( { 𝑧 } ∪ 𝑥 ) = 𝑥 ) |
13 |
11 12
|
sylib |
⊢ ( 𝑧 ∈ 𝑥 → ( { 𝑧 } ∪ 𝑥 ) = 𝑥 ) |
14 |
10 13
|
eqtr2id |
⊢ ( 𝑧 ∈ 𝑥 → 𝑥 = ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
15 |
14
|
iuneq1d |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
16 |
|
iunxun |
⊢ ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
17 |
|
vex |
⊢ 𝑧 ∈ V |
18 |
|
difeq1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
19 |
|
sneq |
⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) |
20 |
19
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) ) |
21 |
20
|
unieqd |
⊢ ( 𝑡 = 𝑧 → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
22 |
21
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
23 |
18 22
|
eqtrd |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
24 |
23
|
ineq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ) |
25 |
17 24
|
iunxsn |
⊢ ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
26 |
25
|
uneq1i |
⊢ ( ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
27 |
16 26
|
eqtri |
⊢ ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
28 |
|
eldifsni |
⊢ ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → 𝑡 ≠ 𝑧 ) |
29 |
|
incom |
⊢ ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 ) |
30 |
|
kmlem4 |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧 ) → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 ) = ∅ ) |
31 |
29 30
|
eqtrid |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧 ) → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
32 |
31
|
ex |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑡 ≠ 𝑧 → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) ) |
33 |
28 32
|
syl5 |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) ) |
34 |
33
|
ralrimiv |
⊢ ( 𝑧 ∈ 𝑥 → ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
35 |
|
iuneq2 |
⊢ ( ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ ) |
36 |
34 35
|
syl |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ ) |
37 |
|
iun0 |
⊢ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ = ∅ |
38 |
36 37
|
eqtrdi |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
39 |
38
|
uneq2d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
40 |
27 39
|
eqtrid |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
41 |
15 40
|
eqtrd |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
42 |
|
un0 |
⊢ ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
43 |
|
indif |
⊢ ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
44 |
42 43
|
eqtri |
⊢ ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
45 |
41 44
|
eqtrdi |
⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
46 |
9 45
|
eqtrid |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |