| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kmlem9.1 | ⊢ 𝐴  =  { 𝑢  ∣  ∃ 𝑡  ∈  𝑥 𝑢  =  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) } | 
						
							| 2 | 1 | unieqi | ⊢ ∪  𝐴  =  ∪  { 𝑢  ∣  ∃ 𝑡  ∈  𝑥 𝑢  =  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) } | 
						
							| 3 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 4 | 3 | difexi | ⊢ ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  ∈  V | 
						
							| 5 | 4 | dfiun2 | ⊢ ∪  𝑡  ∈  𝑥 ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  =  ∪  { 𝑢  ∣  ∃ 𝑡  ∈  𝑥 𝑢  =  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) } | 
						
							| 6 | 2 5 | eqtr4i | ⊢ ∪  𝐴  =  ∪  𝑡  ∈  𝑥 ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) | 
						
							| 7 | 6 | ineq2i | ⊢ ( 𝑧  ∩  ∪  𝐴 )  =  ( 𝑧  ∩  ∪  𝑡  ∈  𝑥 ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) | 
						
							| 8 |  | iunin2 | ⊢ ∪  𝑡  ∈  𝑥 ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( 𝑧  ∩  ∪  𝑡  ∈  𝑥 ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) | 
						
							| 9 | 7 8 | eqtr4i | ⊢ ( 𝑧  ∩  ∪  𝐴 )  =  ∪  𝑡  ∈  𝑥 ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) | 
						
							| 10 |  | undif2 | ⊢ ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) )  =  ( { 𝑧 }  ∪  𝑥 ) | 
						
							| 11 |  | snssi | ⊢ ( 𝑧  ∈  𝑥  →  { 𝑧 }  ⊆  𝑥 ) | 
						
							| 12 |  | ssequn1 | ⊢ ( { 𝑧 }  ⊆  𝑥  ↔  ( { 𝑧 }  ∪  𝑥 )  =  𝑥 ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝑧  ∈  𝑥  →  ( { 𝑧 }  ∪  𝑥 )  =  𝑥 ) | 
						
							| 14 | 10 13 | eqtr2id | ⊢ ( 𝑧  ∈  𝑥  →  𝑥  =  ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 15 | 14 | iuneq1d | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  𝑥 ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∪  𝑡  ∈  ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) ) | 
						
							| 16 |  | iunxun | ⊢ ∪  𝑡  ∈  ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( ∪  𝑡  ∈  { 𝑧 } ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  ∪  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) ) | 
						
							| 17 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 18 |  | difeq1 | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) | 
						
							| 19 |  | sneq | ⊢ ( 𝑡  =  𝑧  →  { 𝑡 }  =  { 𝑧 } ) | 
						
							| 20 | 19 | difeq2d | ⊢ ( 𝑡  =  𝑧  →  ( 𝑥  ∖  { 𝑡 } )  =  ( 𝑥  ∖  { 𝑧 } ) ) | 
						
							| 21 | 20 | unieqd | ⊢ ( 𝑡  =  𝑧  →  ∪  ( 𝑥  ∖  { 𝑡 } )  =  ∪  ( 𝑥  ∖  { 𝑧 } ) ) | 
						
							| 22 | 21 | difeq2d | ⊢ ( 𝑡  =  𝑧  →  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 23 | 18 22 | eqtrd | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 24 | 23 | ineq2d | ⊢ ( 𝑡  =  𝑧  →  ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) ) | 
						
							| 25 | 17 24 | iunxsn | ⊢ ∪  𝑡  ∈  { 𝑧 } ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 26 | 25 | uneq1i | ⊢ ( ∪  𝑡  ∈  { 𝑧 } ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  ∪  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) )  =  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) ) | 
						
							| 27 | 16 26 | eqtri | ⊢ ∪  𝑡  ∈  ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) ) | 
						
							| 28 |  | eldifsni | ⊢ ( 𝑡  ∈  ( 𝑥  ∖  { 𝑧 } )  →  𝑡  ≠  𝑧 ) | 
						
							| 29 |  | incom | ⊢ ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  ∩  𝑧 ) | 
						
							| 30 |  | kmlem4 | ⊢ ( ( 𝑧  ∈  𝑥  ∧  𝑡  ≠  𝑧 )  →  ( ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) )  ∩  𝑧 )  =  ∅ ) | 
						
							| 31 | 29 30 | eqtrid | ⊢ ( ( 𝑧  ∈  𝑥  ∧  𝑡  ≠  𝑧 )  →  ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅ ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑧  ∈  𝑥  →  ( 𝑡  ≠  𝑧  →  ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅ ) ) | 
						
							| 33 | 28 32 | syl5 | ⊢ ( 𝑧  ∈  𝑥  →  ( 𝑡  ∈  ( 𝑥  ∖  { 𝑧 } )  →  ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅ ) ) | 
						
							| 34 | 33 | ralrimiv | ⊢ ( 𝑧  ∈  𝑥  →  ∀ 𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅ ) | 
						
							| 35 |  | iuneq2 | ⊢ ( ∀ 𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅  →  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ∅ ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ∅ ) | 
						
							| 37 |  | iun0 | ⊢ ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ∅  =  ∅ | 
						
							| 38 | 36 37 | eqtrdi | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ∅ ) | 
						
							| 39 | 38 | uneq2d | ⊢ ( 𝑧  ∈  𝑥  →  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∪  𝑡  ∈  ( 𝑥  ∖  { 𝑧 } ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) ) )  =  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∅ ) ) | 
						
							| 40 | 27 39 | eqtrid | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  ( { 𝑧 }  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∅ ) ) | 
						
							| 41 | 15 40 | eqtrd | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  𝑥 ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∅ ) ) | 
						
							| 42 |  | un0 | ⊢ ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∅ )  =  ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 43 |  | indif | ⊢ ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) | 
						
							| 44 | 42 43 | eqtri | ⊢ ( ( 𝑧  ∩  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) )  ∪  ∅ )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) | 
						
							| 45 | 41 44 | eqtrdi | ⊢ ( 𝑧  ∈  𝑥  →  ∪  𝑡  ∈  𝑥 ( 𝑧  ∩  ( 𝑡  ∖  ∪  ( 𝑥  ∖  { 𝑡 } ) ) )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 46 | 9 45 | eqtrid | ⊢ ( 𝑧  ∈  𝑥  →  ( 𝑧  ∩  ∪  𝐴 )  =  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) |