Step |
Hyp |
Ref |
Expression |
1 |
|
kmlem9.1 |
⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
2 |
|
difeq1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
3 |
|
sneq |
⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) |
4 |
3
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) ) |
5 |
4
|
unieqd |
⊢ ( 𝑡 = 𝑧 → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
6 |
5
|
difeq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
7 |
2 6
|
eqtrd |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
8 |
7
|
neeq1d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ↔ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ) ) |
9 |
8
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ) |
10 |
7
|
ineq1d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) = ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
11 |
10
|
eleq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
12 |
11
|
eubidv |
⊢ ( 𝑡 = 𝑧 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
14 |
9 13
|
imbi12i |
⊢ ( ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
15 |
|
in12 |
⊢ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) = ( 𝑦 ∩ ( 𝑧 ∩ ∪ 𝐴 ) ) |
16 |
|
incom |
⊢ ( 𝑦 ∩ ( 𝑧 ∩ ∪ 𝐴 ) ) = ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) |
17 |
15 16
|
eqtri |
⊢ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) = ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) |
18 |
1
|
kmlem11 |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
19 |
18
|
ineq1d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) = ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
20 |
17 19
|
eqtr2id |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) = ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) |
21 |
20
|
eleq2d |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
22 |
21
|
eubidv |
⊢ ( 𝑧 ∈ 𝑥 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
23 |
|
ax-1 |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
24 |
22 23
|
syl6bi |
⊢ ( 𝑧 ∈ 𝑥 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
25 |
24
|
ralimia |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
26 |
25
|
imim2i |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
27 |
14 26
|
sylbi |
⊢ ( ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
28 |
1
|
raleqi |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
29 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
30 |
|
vex |
⊢ 𝑧 ∈ V |
31 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
33 |
30 32
|
elab |
⊢ ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
34 |
33
|
imbi1i |
⊢ ( ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
35 |
|
r19.23v |
⊢ ( ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
36 |
34 35
|
bitr4i |
⊢ ( ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
37 |
36
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑧 ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
38 |
|
ralcom4 |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑧 ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
39 |
|
vex |
⊢ 𝑡 ∈ V |
40 |
39
|
difexi |
⊢ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∈ V |
41 |
|
neeq1 |
⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ ↔ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ) ) |
42 |
|
ineq1 |
⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ∩ 𝑦 ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) |
43 |
42
|
eleq2d |
⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
44 |
43
|
eubidv |
⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
45 |
41 44
|
imbi12d |
⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) ) |
46 |
40 45
|
ceqsalv |
⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
47 |
46
|
ralbii |
⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
48 |
37 38 47
|
3bitr2i |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
49 |
28 29 48
|
3bitri |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
50 |
|
ralim |
⊢ ( ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
51 |
49 50
|
sylbi |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
52 |
27 51
|
syl11 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |