| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kmlem14.1 |
⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) |
| 2 |
|
kmlem14.2 |
⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 3 |
|
kmlem14.3 |
⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑢 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) |
| 5 |
4
|
eu1 |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ) |
| 6 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ) |
| 7 |
|
clelsb1 |
⊢ ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑢 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 8 |
|
elin |
⊢ ( 𝑢 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) ) |
| 10 |
|
equcom |
⊢ ( 𝑣 = 𝑢 ↔ 𝑢 = 𝑣 ) |
| 11 |
9 10
|
imbi12i |
⊢ ( ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ↔ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ↔ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) |
| 13 |
6 12
|
anbi12i |
⊢ ( ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 14 |
|
19.28v |
⊢ ( ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 16 |
15
|
exbii |
⊢ ( ∃ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 17 |
5 16
|
bitri |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 18 |
17
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 19 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 20 |
2
|
albii |
⊢ ( ∀ 𝑢 𝜓 ↔ ∀ 𝑢 ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 21 |
|
19.21v |
⊢ ( ∀ 𝑢 ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 22 |
20 21
|
bitri |
⊢ ( ∀ 𝑢 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 23 |
22
|
exbii |
⊢ ( ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 24 |
|
19.37v |
⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑥 → ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 25 |
23 24
|
bitri |
⊢ ( ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 26 |
25
|
albii |
⊢ ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 27 |
19 26
|
bitr4i |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) |
| 28 |
3 18 27
|
3bitri |
⊢ ( 𝜒 ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) |
| 29 |
28
|
anbi2i |
⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) ) |
| 30 |
|
19.28v |
⊢ ( ∀ 𝑧 ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 𝜓 ) ) |
| 31 |
|
19.28v |
⊢ ( ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ) |
| 32 |
31
|
exbii |
⊢ ( ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ↔ ∃ 𝑣 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ) |
| 33 |
|
19.42v |
⊢ ( ∃ 𝑣 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑢 𝜓 ) ↔ ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ) |
| 34 |
32 33
|
bitr2i |
⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 35 |
34
|
albii |
⊢ ( ∀ 𝑧 ( ¬ 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ∀ 𝑢 𝜓 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 36 |
29 30 35
|
3bitr2i |
⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |