Metamath Proof Explorer


Theorem kmlem2

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Assertion kmlem2 ( ∃ 𝑦𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 ineq2 ( 𝑦 = 𝑣 → ( 𝑧𝑦 ) = ( 𝑧𝑣 ) )
2 1 eleq2d ( 𝑦 = 𝑣 → ( 𝑤 ∈ ( 𝑧𝑦 ) ↔ 𝑤 ∈ ( 𝑧𝑣 ) ) )
3 2 eubidv ( 𝑦 = 𝑣 → ( ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) )
4 3 imbi2d ( 𝑦 = 𝑣 → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) ) )
5 4 ralbidv ( 𝑦 = 𝑣 → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) ) )
6 5 cbvexvw ( ∃ 𝑦𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ∃ 𝑣𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) )
7 indi ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) = ( ( 𝑧𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) )
8 elssuni ( 𝑧𝑥𝑧 𝑥 )
9 8 ssneld ( 𝑧𝑥 → ( ¬ 𝑢 𝑥 → ¬ 𝑢𝑧 ) )
10 disjsn ( ( 𝑧 ∩ { 𝑢 } ) = ∅ ↔ ¬ 𝑢𝑧 )
11 9 10 syl6ibr ( 𝑧𝑥 → ( ¬ 𝑢 𝑥 → ( 𝑧 ∩ { 𝑢 } ) = ∅ ) )
12 11 impcom ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( 𝑧 ∩ { 𝑢 } ) = ∅ )
13 12 uneq2d ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( ( 𝑧𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) ) = ( ( 𝑧𝑣 ) ∪ ∅ ) )
14 un0 ( ( 𝑧𝑣 ) ∪ ∅ ) = ( 𝑧𝑣 )
15 13 14 eqtrdi ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( ( 𝑧𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) ) = ( 𝑧𝑣 ) )
16 7 15 syl5req ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( 𝑧𝑣 ) = ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) )
17 16 eleq2d ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( 𝑤 ∈ ( 𝑧𝑣 ) ↔ 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) )
18 17 eubidv ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) )
19 18 imbi2d ( ( ¬ 𝑢 𝑥𝑧𝑥 ) → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) )
20 19 ralbidva ( ¬ 𝑢 𝑥 → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) ↔ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) )
21 vsnid 𝑢 ∈ { 𝑢 }
22 21 olci ( 𝑢𝑣𝑢 ∈ { 𝑢 } )
23 elun ( 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } ) ↔ ( 𝑢𝑣𝑢 ∈ { 𝑢 } ) )
24 22 23 mpbir 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } )
25 elssuni ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 → ( 𝑣 ∪ { 𝑢 } ) ⊆ 𝑥 )
26 25 sseld ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 → ( 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } ) → 𝑢 𝑥 ) )
27 24 26 mpi ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥𝑢 𝑥 )
28 27 con3i ( ¬ 𝑢 𝑥 → ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 )
29 28 biantrurd ( ¬ 𝑢 𝑥 → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) )
30 20 29 bitrd ( ¬ 𝑢 𝑥 → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) )
31 vex 𝑣 ∈ V
32 snex { 𝑢 } ∈ V
33 31 32 unex ( 𝑣 ∪ { 𝑢 } ) ∈ V
34 eleq1 ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑦𝑥 ↔ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ) )
35 34 notbid ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ¬ 𝑦𝑥 ↔ ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ) )
36 ineq2 ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑧𝑦 ) = ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) )
37 36 eleq2d ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑤 ∈ ( 𝑧𝑦 ) ↔ 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) )
38 37 eubidv ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) )
39 38 imbi2d ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) )
40 39 ralbidv ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) )
41 35 40 anbi12d ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) )
42 33 41 spcev ( ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) → ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )
43 30 42 syl6bi ( ¬ 𝑢 𝑥 → ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) ) )
44 vuniex 𝑥 ∈ V
45 eleq2 ( 𝑦 = 𝑥 → ( 𝑢𝑦𝑢 𝑥 ) )
46 45 notbid ( 𝑦 = 𝑥 → ( ¬ 𝑢𝑦 ↔ ¬ 𝑢 𝑥 ) )
47 46 exbidv ( 𝑦 = 𝑥 → ( ∃ 𝑢 ¬ 𝑢𝑦 ↔ ∃ 𝑢 ¬ 𝑢 𝑥 ) )
48 nalset ¬ ∃ 𝑦𝑢 𝑢𝑦
49 alexn ( ∀ 𝑦𝑢 ¬ 𝑢𝑦 ↔ ¬ ∃ 𝑦𝑢 𝑢𝑦 )
50 48 49 mpbir 𝑦𝑢 ¬ 𝑢𝑦
51 50 spi 𝑢 ¬ 𝑢𝑦
52 44 47 51 vtocl 𝑢 ¬ 𝑢 𝑥
53 43 52 exlimiiv ( ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )
54 53 exlimiv ( ∃ 𝑣𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )
55 6 54 sylbi ( ∃ 𝑦𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) → ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )
56 exsimpr ( ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) → ∃ 𝑦𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) )
57 55 56 impbii ( ∃ 𝑦𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧𝑦 ) ) ) )