Step |
Hyp |
Ref |
Expression |
1 |
|
elequ1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ 𝑥 ↔ 𝑤 ∈ 𝑥 ) ) |
2 |
|
neeq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑧 ≠ 𝑣 ↔ 𝑧 ≠ 𝑤 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) ) |
4 |
|
elequ2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑤 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑣 = 𝑤 → ( ¬ 𝑦 ∈ 𝑣 ↔ ¬ 𝑦 ∈ 𝑤 ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑣 = 𝑤 → ( ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ¬ 𝑦 ∈ 𝑤 ) ) ) |
7 |
6
|
spvv |
⊢ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ¬ 𝑦 ∈ 𝑤 ) ) |
8 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
10 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) |
11 |
10
|
notbii |
⊢ ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ¬ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) |
12 |
|
alnex |
⊢ ( ∀ 𝑣 ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) |
13 |
|
con2b |
⊢ ( ( 𝑦 ∈ 𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑣 ) ) |
14 |
|
imnan |
⊢ ( ( 𝑦 ∈ 𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) |
15 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑣 ≠ 𝑧 ) ) |
16 |
|
necom |
⊢ ( 𝑣 ≠ 𝑧 ↔ 𝑧 ≠ 𝑣 ) |
17 |
16
|
anbi2i |
⊢ ( ( 𝑣 ∈ 𝑥 ∧ 𝑣 ≠ 𝑧 ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ) |
18 |
15 17
|
bitri |
⊢ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ) |
19 |
18
|
imbi1i |
⊢ ( ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑣 ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
20 |
13 14 19
|
3bitr3i |
⊢ ( ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑣 ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
22 |
11 12 21
|
3bitr2i |
⊢ ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
23 |
9 22
|
sylib |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
24 |
8 23
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
25 |
7 24
|
syl11 |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦 ∈ 𝑤 ) ) |
26 |
25
|
ralrimiv |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ∀ 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦 ∈ 𝑤 ) |
27 |
|
disj |
⊢ ( ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ↔ ∀ 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦 ∈ 𝑤 ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ) |