| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elequ1 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑣  ∈  𝑥  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 2 |  | neeq2 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑧  ≠  𝑣  ↔  𝑧  ≠  𝑤 ) ) | 
						
							| 3 | 1 2 | anbi12d | ⊢ ( 𝑣  =  𝑤  →  ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  ↔  ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 ) ) ) | 
						
							| 4 |  | elequ2 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑦  ∈  𝑣  ↔  𝑦  ∈  𝑤 ) ) | 
						
							| 5 | 4 | notbid | ⊢ ( 𝑣  =  𝑤  →  ( ¬  𝑦  ∈  𝑣  ↔  ¬  𝑦  ∈  𝑤 ) ) | 
						
							| 6 | 3 5 | imbi12d | ⊢ ( 𝑣  =  𝑤  →  ( ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 )  ↔  ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ¬  𝑦  ∈  𝑤 ) ) ) | 
						
							| 7 | 6 | spvv | ⊢ ( ∀ 𝑣 ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 )  →  ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ¬  𝑦  ∈  𝑤 ) ) | 
						
							| 8 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ( 𝑦  ∈  𝑧  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑦  ∈  𝑧  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } ) )  →  ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } ) ) | 
						
							| 10 |  | eluni | ⊢ ( 𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } )  ↔  ∃ 𝑣 ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 11 | 10 | notbii | ⊢ ( ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } )  ↔  ¬  ∃ 𝑣 ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 12 |  | alnex | ⊢ ( ∀ 𝑣 ¬  ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ¬  ∃ 𝑣 ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 13 |  | con2b | ⊢ ( ( 𝑦  ∈  𝑣  →  ¬  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ( 𝑣  ∈  ( 𝑥  ∖  { 𝑧 } )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 14 |  | imnan | ⊢ ( ( 𝑦  ∈  𝑣  →  ¬  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ¬  ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) ) ) | 
						
							| 15 |  | eldifsn | ⊢ ( 𝑣  ∈  ( 𝑥  ∖  { 𝑧 } )  ↔  ( 𝑣  ∈  𝑥  ∧  𝑣  ≠  𝑧 ) ) | 
						
							| 16 |  | necom | ⊢ ( 𝑣  ≠  𝑧  ↔  𝑧  ≠  𝑣 ) | 
						
							| 17 | 16 | anbi2i | ⊢ ( ( 𝑣  ∈  𝑥  ∧  𝑣  ≠  𝑧 )  ↔  ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 ) ) | 
						
							| 18 | 15 17 | bitri | ⊢ ( 𝑣  ∈  ( 𝑥  ∖  { 𝑧 } )  ↔  ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 ) ) | 
						
							| 19 | 18 | imbi1i | ⊢ ( ( 𝑣  ∈  ( 𝑥  ∖  { 𝑧 } )  →  ¬  𝑦  ∈  𝑣 )  ↔  ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 20 | 13 14 19 | 3bitr3i | ⊢ ( ¬  ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 21 | 20 | albii | ⊢ ( ∀ 𝑣 ¬  ( 𝑦  ∈  𝑣  ∧  𝑣  ∈  ( 𝑥  ∖  { 𝑧 } ) )  ↔  ∀ 𝑣 ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 22 | 11 12 21 | 3bitr2i | ⊢ ( ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } )  ↔  ∀ 𝑣 ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 23 | 9 22 | sylib | ⊢ ( ( 𝑦  ∈  𝑧  ∧  ¬  𝑦  ∈  ∪  ( 𝑥  ∖  { 𝑧 } ) )  →  ∀ 𝑣 ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 24 | 8 23 | sylbi | ⊢ ( 𝑦  ∈  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  →  ∀ 𝑣 ( ( 𝑣  ∈  𝑥  ∧  𝑧  ≠  𝑣 )  →  ¬  𝑦  ∈  𝑣 ) ) | 
						
							| 25 | 7 24 | syl11 | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ( 𝑦  ∈  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  →  ¬  𝑦  ∈  𝑤 ) ) | 
						
							| 26 | 25 | ralrimiv | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ∀ 𝑦  ∈  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ¬  𝑦  ∈  𝑤 ) | 
						
							| 27 |  | disj | ⊢ ( ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  𝑤 )  =  ∅  ↔  ∀ 𝑦  ∈  ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) ) ¬  𝑦  ∈  𝑤 ) | 
						
							| 28 | 26 27 | sylibr | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  𝑤 )  =  ∅ ) |