Metamath Proof Explorer


Theorem kmlem5

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Assertion kmlem5 ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 difss ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤
2 sslin ( ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤 → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) )
3 1 2 ax-mp ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 )
4 kmlem4 ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ )
5 3 4 sseqtrid ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ )
6 ss0b ( ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ ↔ ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ )
7 5 6 sylib ( ( 𝑤𝑥𝑧𝑤 ) → ( ( 𝑧 ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ )