| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difss | ⊢ ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) )  ⊆  𝑤 | 
						
							| 2 |  | sslin | ⊢ ( ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) )  ⊆  𝑤  →  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  ⊆  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  𝑤 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  ⊆  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  𝑤 ) | 
						
							| 4 |  | kmlem4 | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  𝑤 )  =  ∅ ) | 
						
							| 5 | 3 4 | sseqtrid | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  ⊆  ∅ ) | 
						
							| 6 |  | ss0b | ⊢ ( ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  ⊆  ∅  ↔  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  =  ∅ ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( ( 𝑤  ∈  𝑥  ∧  𝑧  ≠  𝑤 )  →  ( ( 𝑧  ∖  ∪  ( 𝑥  ∖  { 𝑧 } ) )  ∩  ( 𝑤  ∖  ∪  ( 𝑥  ∖  { 𝑤 } ) ) )  =  ∅ ) |