| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difss |
⊢ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤 |
| 2 |
|
sslin |
⊢ ( ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤 → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) |
| 4 |
|
kmlem4 |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ) |
| 5 |
3 4
|
sseqtrid |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ ) |
| 6 |
|
ss0b |
⊢ ( ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ ↔ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ ) |
| 7 |
5 6
|
sylib |
⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ ) |