| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26 | ⊢ ( ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ ) )  ↔  ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ ) ) ) | 
						
							| 2 |  | n0 | ⊢ ( 𝑧  ≠  ∅  ↔  ∃ 𝑣 𝑣  ∈  𝑧 ) | 
						
							| 3 | 2 | biimpi | ⊢ ( 𝑧  ≠  ∅  →  ∃ 𝑣 𝑣  ∈  𝑧 ) | 
						
							| 4 |  | ne0i | ⊢ ( 𝑣  ∈  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 5 | 4 | necon2bi | ⊢ ( 𝐴  =  ∅  →  ¬  𝑣  ∈  𝐴 ) | 
						
							| 6 | 5 | imim2i | ⊢ ( ( 𝜑  →  𝐴  =  ∅ )  →  ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ )  →  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 8 | 7 | alrimiv | ⊢ ( ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ )  →  ∀ 𝑣 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 9 |  | 19.29r | ⊢ ( ( ∃ 𝑣 𝑣  ∈  𝑧  ∧  ∀ 𝑣 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) )  →  ∃ 𝑣 ( 𝑣  ∈  𝑧  ∧  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) ) | 
						
							| 10 |  | df-rex | ⊢ ( ∃ 𝑣  ∈  𝑧 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 )  ↔  ∃ 𝑣 ( 𝑣  ∈  𝑧  ∧  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( ∃ 𝑣 𝑣  ∈  𝑧  ∧  ∀ 𝑣 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) )  →  ∃ 𝑣  ∈  𝑧 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 12 | 3 8 11 | syl2an | ⊢ ( ( 𝑧  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ ) )  →  ∃ 𝑣  ∈  𝑧 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 13 | 12 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  ∧  ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ ) )  →  ∀ 𝑧  ∈  𝑥 ∃ 𝑣  ∈  𝑧 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) | 
						
							| 14 | 1 13 | sylbir | ⊢ ( ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  𝐴  =  ∅ ) )  →  ∀ 𝑧  ∈  𝑥 ∃ 𝑣  ∈  𝑧 ∀ 𝑤  ∈  𝑥 ( 𝜑  →  ¬  𝑣  ∈  𝐴 ) ) |