Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) ) |
2 |
|
n0 |
⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ 𝑧 ) |
3 |
2
|
biimpi |
⊢ ( 𝑧 ≠ ∅ → ∃ 𝑣 𝑣 ∈ 𝑧 ) |
4 |
|
ne0i |
⊢ ( 𝑣 ∈ 𝐴 → 𝐴 ≠ ∅ ) |
5 |
4
|
necon2bi |
⊢ ( 𝐴 = ∅ → ¬ 𝑣 ∈ 𝐴 ) |
6 |
5
|
imim2i |
⊢ ( ( 𝜑 → 𝐴 = ∅ ) → ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
8 |
7
|
alrimiv |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) → ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
9 |
|
19.29r |
⊢ ( ( ∃ 𝑣 𝑣 ∈ 𝑧 ∧ ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) → ∃ 𝑣 ( 𝑣 ∈ 𝑧 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) ) |
10 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑧 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( ∃ 𝑣 𝑣 ∈ 𝑧 ∧ ∀ 𝑣 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) → ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
12 |
3 8 11
|
syl2an |
⊢ ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
13 |
12
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |
14 |
1 13
|
sylbir |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → 𝐴 = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝜑 → ¬ 𝑣 ∈ 𝐴 ) ) |