Metamath Proof Explorer


Theorem kmlem7

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion kmlem7 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ¬ ∃ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 kmlem6 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) )
2 ralinexa ( ∀ 𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ¬ ∃ 𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
3 2 rexbii ( ∃ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ∃ 𝑣𝑧 ¬ ∃ 𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
4 rexnal ( ∃ 𝑣𝑧 ¬ ∃ 𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ¬ ∀ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
5 3 4 bitri ( ∃ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ¬ ∀ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
6 5 ralbii ( ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ∀ 𝑧𝑥 ¬ ∀ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
7 ralnex ( ∀ 𝑧𝑥 ¬ ∀ 𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ¬ ∃ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
8 6 7 bitri ( ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤 → ¬ 𝑣 ∈ ( 𝑧𝑤 ) ) ↔ ¬ ∃ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )
9 1 8 sylib ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ¬ ∃ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝑧𝑤𝑣 ∈ ( 𝑧𝑤 ) ) )