| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝑢 ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ) |
| 2 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑧 ¬ 𝜓 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) ) |
| 3 |
|
rexnal |
⊢ ( ∃ 𝑤 ∈ 𝑧 ¬ 𝜓 ↔ ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ) |
| 4 |
2 3
|
bitr3i |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ) |
| 5 |
|
exsimpl |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) → ∃ 𝑤 𝑤 ∈ 𝑧 ) |
| 6 |
|
n0 |
⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑧 ) |
| 7 |
5 6
|
sylibr |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) → 𝑧 ≠ ∅ ) |
| 8 |
4 7
|
sylbir |
⊢ ( ¬ ∀ 𝑤 ∈ 𝑧 𝜓 → 𝑧 ≠ ∅ ) |
| 9 |
8
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑢 ¬ ∀ 𝑤 ∈ 𝑧 𝜓 → ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ ) |
| 10 |
1 9
|
sylbir |
⊢ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ ) |
| 11 |
|
kmlem2 |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 12 |
|
biimt |
⊢ ( 𝑧 ≠ ∅ → ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 13 |
12
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ∀ 𝑧 ∈ 𝑢 ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 14 |
|
ralbi |
⊢ ( ∀ 𝑧 ∈ 𝑢 ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 16 |
15
|
anbi2d |
⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 17 |
16
|
exbidv |
⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 18 |
11 17
|
bitr4id |
⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 19 |
10 18
|
syl |
⊢ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 20 |
19
|
pm5.74i |
⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 21 |
|
pm4.64 |
⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 22 |
20 21
|
bitri |
⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |