Step |
Hyp |
Ref |
Expression |
1 |
|
kmlem9.1 |
⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
5 |
2 4 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
6 |
|
vex |
⊢ 𝑤 ∈ V |
7 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
9 |
6 8 1
|
elab2 |
⊢ ( 𝑤 ∈ 𝐴 ↔ ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
10 |
|
difeq1 |
⊢ ( 𝑡 = ℎ → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
11 |
|
sneq |
⊢ ( 𝑡 = ℎ → { 𝑡 } = { ℎ } ) |
12 |
11
|
difeq2d |
⊢ ( 𝑡 = ℎ → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { ℎ } ) ) |
13 |
12
|
unieqd |
⊢ ( 𝑡 = ℎ → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { ℎ } ) ) |
14 |
13
|
difeq2d |
⊢ ( 𝑡 = ℎ → ( ℎ ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
15 |
10 14
|
eqtrd |
⊢ ( 𝑡 = ℎ → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑡 = ℎ → ( 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) |
17 |
16
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ 𝑥 𝑤 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
18 |
9 17
|
bitri |
⊢ ( 𝑤 ∈ 𝐴 ↔ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) |
19 |
|
reeanv |
⊢ ( ∃ 𝑡 ∈ 𝑥 ∃ ℎ ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) |
20 |
|
eqeq12 |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 = 𝑤 ↔ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) |
21 |
15 20
|
syl5ibr |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑡 = ℎ → 𝑧 = 𝑤 ) ) |
22 |
21
|
necon3d |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → 𝑡 ≠ ℎ ) ) |
23 |
|
kmlem5 |
⊢ ( ( ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ ) → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) = ∅ ) |
24 |
|
ineq12 |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ∩ 𝑤 ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) ) |
25 |
24
|
eqeq1d |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) = ∅ ) ) |
26 |
23 25
|
syl5ibr |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ( ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ ) → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
27 |
26
|
expd |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ℎ ∈ 𝑥 → ( 𝑡 ≠ ℎ → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
28 |
22 27
|
syl5d |
⊢ ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( ℎ ∈ 𝑥 → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
29 |
28
|
com12 |
⊢ ( ℎ ∈ 𝑥 → ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑡 ∈ 𝑥 ∧ ℎ ∈ 𝑥 ) → ( ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
31 |
30
|
rexlimivv |
⊢ ( ∃ 𝑡 ∈ 𝑥 ∃ ℎ ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
32 |
19 31
|
sylbir |
⊢ ( ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∧ ∃ ℎ ∈ 𝑥 𝑤 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
33 |
5 18 32
|
syl2anb |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
34 |
33
|
rgen2 |
⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |