Step |
Hyp |
Ref |
Expression |
1 |
|
knatar.1 |
⊢ 𝑋 = ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } |
2 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝐴 ∈ 𝒫 𝐴 ) |
4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) |
5 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
6 |
|
id |
⊢ ( 𝑧 = 𝐴 → 𝑧 = 𝐴 ) |
7 |
5 6
|
sseq12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) ) |
8 |
7
|
intminss |
⊢ ( ( 𝐴 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
9 |
3 4 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝐴 ) |
10 |
1 9
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ 𝐴 ) |
11 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
13 |
|
pweq |
⊢ ( 𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤 ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
15 |
14
|
sseq2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
16 |
13 15
|
raleqbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) ) |
17 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
18 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑤 ∈ 𝒫 𝐴 ) |
19 |
16 17 18
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∀ 𝑦 ∈ 𝒫 𝑤 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
21 |
|
id |
⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) |
22 |
20 21
|
sseq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) |
23 |
22
|
intminss |
⊢ ( ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } ⊆ 𝑤 ) |
25 |
1 24
|
eqsstrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ⊆ 𝑤 ) |
26 |
|
vex |
⊢ 𝑤 ∈ V |
27 |
26
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤 ) |
28 |
25 27
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → 𝑋 ∈ 𝒫 𝑤 ) |
29 |
12 19 28
|
rspcdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝑤 ) ) |
30 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) |
31 |
29 30
|
sstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) |
32 |
31
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑤 ∈ 𝒫 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
34 |
|
ssintrab |
⊢ ( ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ↔ ∀ 𝑤 ∈ 𝒫 𝐴 ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑤 ) ) |
35 |
33 34
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ) |
36 |
22
|
cbvrabv |
⊢ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
37 |
36
|
inteqi |
⊢ ∩ { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑧 } = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
38 |
1 37
|
eqtri |
⊢ 𝑋 = ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } |
39 |
35 38
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
40 |
11
|
sseq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
41 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
42 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
43 |
42
|
sseq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
44 |
41 43
|
raleqbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) ) |
45 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
46 |
44 45 3
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
47 |
3 10
|
sselpwd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ∈ 𝒫 𝐴 ) |
48 |
40 46 47
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
49 |
48 4
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
50 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
51 |
50
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝐴 ) |
52 |
49 51
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ) |
53 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
54 |
53
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
55 |
|
pweq |
⊢ ( 𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋 ) |
56 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
57 |
56
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
58 |
55 57
|
raleqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
59 |
58 45 47
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
60 |
50
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ↔ ( 𝐹 ‘ 𝑋 ) ⊆ 𝑋 ) |
61 |
39 60
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝑋 ) |
62 |
54 59 61
|
rspcdva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
64 |
|
id |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → 𝑤 = ( 𝐹 ‘ 𝑋 ) ) |
65 |
63 64
|
sseq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 ↔ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) ) |
66 |
65
|
intminss |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ 𝒫 𝐴 ∧ ( 𝐹 ‘ ( 𝐹 ‘ 𝑋 ) ) ⊆ ( 𝐹 ‘ 𝑋 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
67 |
52 62 66
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ { 𝑤 ∈ 𝒫 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) ⊆ 𝑤 } ⊆ ( 𝐹 ‘ 𝑋 ) ) |
68 |
38 67
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → 𝑋 ⊆ ( 𝐹 ‘ 𝑋 ) ) |
69 |
39 68
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
70 |
10 69
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |