Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem10.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcnlem10.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcnlem10.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
knoppcnlem10.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
knoppcnlem10.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑀 ∈ ℕ0 ) |
8 |
2 6 7
|
knoppcnlem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) |
9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) ) |
10 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
12 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
13 |
12
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
15 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
16 |
15 5
|
expcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝑀 ) ∈ ℂ ) |
17 |
11 14 16
|
cnmptc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝐶 ↑ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
18 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
19 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
20 |
18 19
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
21 |
20 5
|
expcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℂ ) |
22 |
11 14 21
|
cnmptc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 2 · 𝑁 ) ↑ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
23 |
12
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
24 |
23
|
oveq2i |
⊢ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
25 |
12
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
26 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
27 |
25 26
|
ax-mp |
⊢ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
28 |
24 27
|
eqsstri |
⊢ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
29 |
11
|
cnmptid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
30 |
28 29
|
sselid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
31 |
12
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
33 |
|
oveq12 |
⊢ ( ( 𝑢 = ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∧ 𝑣 = 𝑧 ) → ( 𝑢 · 𝑣 ) = ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) |
34 |
11 22 30 14 14 32 33
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
35 |
|
2re |
⊢ 2 ∈ ℝ |
36 |
35
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
37 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
38 |
36 37
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
39 |
38 5
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ ) |
41 |
40 6
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ∈ ℝ ) |
42 |
41
|
fmpttd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) : ℝ ⟶ ℝ ) |
43 |
42
|
frnd |
⊢ ( 𝜑 → ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ) |
44 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
45 |
44
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
46 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
47 |
13 43 45 46
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
48 |
34 47
|
mpbid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
49 |
48 24
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
50 |
|
ssid |
⊢ ℂ ⊆ ℂ |
51 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
52 |
44 50 51
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
53 |
1
|
dnicn |
⊢ 𝑇 ∈ ( ℝ –cn→ ℝ ) |
54 |
53
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ ( ℝ –cn→ ℝ ) ) |
55 |
52 54
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ ( ℝ –cn→ ℂ ) ) |
56 |
13
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
57 |
12 23 56
|
cncfcn |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
58 |
44 50 57
|
mp2an |
⊢ ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
59 |
55 58
|
eleqtrdi |
⊢ ( 𝜑 → 𝑇 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
60 |
11 49 59
|
cnmpt11f |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
61 |
|
oveq12 |
⊢ ( ( 𝑢 = ( 𝐶 ↑ 𝑀 ) ∧ 𝑣 = ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) → ( 𝑢 · 𝑣 ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) |
62 |
11 17 60 14 14 32 61
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
63 |
9 62
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |