Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
⊢ 𝑉 = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 |
3 |
|
konigsberg.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
1 2 3
|
konigsberglem5 |
⊢ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
5 |
|
elpri |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } → ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ∨ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 2 ) ) |
6 |
|
2pos |
⊢ 0 < 2 |
7 |
|
0re |
⊢ 0 ∈ ℝ |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
7 8
|
ltnsymi |
⊢ ( 0 < 2 → ¬ 2 < 0 ) |
10 |
6 9
|
ax-mp |
⊢ ¬ 2 < 0 |
11 |
|
breq2 |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 → ( 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ 2 < 0 ) ) |
12 |
10 11
|
mtbiri |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 → ¬ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
13 |
8
|
ltnri |
⊢ ¬ 2 < 2 |
14 |
|
breq2 |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 2 → ( 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ↔ 2 < 2 ) ) |
15 |
13 14
|
mtbiri |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 2 → ¬ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
16 |
12 15
|
jaoi |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ∨ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 2 ) → ¬ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
17 |
5 16
|
syl |
⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } → ¬ 2 < ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
18 |
4 17
|
mt2 |
⊢ ¬ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } |
19 |
1 2 3
|
konigsbergumgr |
⊢ 𝐺 ∈ UMGraph |
20 |
|
umgrupgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) |
21 |
19 20
|
ax-mp |
⊢ 𝐺 ∈ UPGraph |
22 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
23 |
1
|
ovexi |
⊢ 𝑉 ∈ V |
24 |
|
s7cli |
⊢ 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 ∈ Word V |
25 |
2 24
|
eqeltri |
⊢ 𝐸 ∈ Word V |
26 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ Word V ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
27 |
23 25 26
|
mp2an |
⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 |
28 |
22 27
|
eqtr2i |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
29 |
28
|
eulerpath |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( EulerPaths ‘ 𝐺 ) ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |
30 |
21 29
|
mpan |
⊢ ( ( EulerPaths ‘ 𝐺 ) ≠ ∅ → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |
31 |
30
|
necon1bi |
⊢ ( ¬ ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } → ( EulerPaths ‘ 𝐺 ) = ∅ ) |
32 |
18 31
|
ax-mp |
⊢ ( EulerPaths ‘ 𝐺 ) = ∅ |