Metamath Proof Explorer


Theorem konigsbergiedgw

Description: The indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v 𝑉 = ( 0 ... 3 )
konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
Assertion konigsbergiedgw 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }

Proof

Step Hyp Ref Expression
1 konigsberg.v 𝑉 = ( 0 ... 3 )
2 konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
3 konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
4 3nn0 3 ∈ ℕ0
5 0elfz ( 3 ∈ ℕ0 → 0 ∈ ( 0 ... 3 ) )
6 4 5 ax-mp 0 ∈ ( 0 ... 3 )
7 1nn0 1 ∈ ℕ0
8 1le3 1 ≤ 3
9 elfz2nn0 ( 1 ∈ ( 0 ... 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3 ) )
10 7 4 8 9 mpbir3an 1 ∈ ( 0 ... 3 )
11 0ne1 0 ≠ 1
12 6 10 11 umgrbi { 0 , 1 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
13 12 a1i ( ⊤ → { 0 , 1 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
14 2nn0 2 ∈ ℕ0
15 2re 2 ∈ ℝ
16 3re 3 ∈ ℝ
17 2lt3 2 < 3
18 15 16 17 ltleii 2 ≤ 3
19 elfz2nn0 ( 2 ∈ ( 0 ... 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3 ) )
20 14 4 18 19 mpbir3an 2 ∈ ( 0 ... 3 )
21 0ne2 0 ≠ 2
22 6 20 21 umgrbi { 0 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
23 22 a1i ( ⊤ → { 0 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
24 nn0fz0 ( 3 ∈ ℕ0 ↔ 3 ∈ ( 0 ... 3 ) )
25 4 24 mpbi 3 ∈ ( 0 ... 3 )
26 3ne0 3 ≠ 0
27 26 necomi 0 ≠ 3
28 6 25 27 umgrbi { 0 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
29 28 a1i ( ⊤ → { 0 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
30 1ne2 1 ≠ 2
31 10 20 30 umgrbi { 1 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
32 31 a1i ( ⊤ → { 1 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
33 15 17 ltneii 2 ≠ 3
34 20 25 33 umgrbi { 2 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
35 34 a1i ( ⊤ → { 2 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
36 13 23 29 32 32 35 35 s7cld ( ⊤ → ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩ ∈ Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
37 36 mptru ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩ ∈ Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
38 1 pweqi 𝒫 𝑉 = 𝒫 ( 0 ... 3 )
39 38 rabeqi { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
40 39 wrdeqi Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
41 37 2 40 3eltr4i 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }