Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
⊢ 𝑉 = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 |
3 |
|
konigsberg.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
5 |
|
0elfz |
⊢ ( 3 ∈ ℕ0 → 0 ∈ ( 0 ... 3 ) ) |
6 |
4 5
|
ax-mp |
⊢ 0 ∈ ( 0 ... 3 ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
|
1le3 |
⊢ 1 ≤ 3 |
9 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3 ) ) |
10 |
7 4 8 9
|
mpbir3an |
⊢ 1 ∈ ( 0 ... 3 ) |
11 |
|
0ne1 |
⊢ 0 ≠ 1 |
12 |
6 10 11
|
umgrbi |
⊢ { 0 , 1 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
13 |
12
|
a1i |
⊢ ( ⊤ → { 0 , 1 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
14 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
15 |
|
2re |
⊢ 2 ∈ ℝ |
16 |
|
3re |
⊢ 3 ∈ ℝ |
17 |
|
2lt3 |
⊢ 2 < 3 |
18 |
15 16 17
|
ltleii |
⊢ 2 ≤ 3 |
19 |
|
elfz2nn0 |
⊢ ( 2 ∈ ( 0 ... 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3 ) ) |
20 |
14 4 18 19
|
mpbir3an |
⊢ 2 ∈ ( 0 ... 3 ) |
21 |
|
0ne2 |
⊢ 0 ≠ 2 |
22 |
6 20 21
|
umgrbi |
⊢ { 0 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
23 |
22
|
a1i |
⊢ ( ⊤ → { 0 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
24 |
|
nn0fz0 |
⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( 0 ... 3 ) ) |
25 |
4 24
|
mpbi |
⊢ 3 ∈ ( 0 ... 3 ) |
26 |
|
3ne0 |
⊢ 3 ≠ 0 |
27 |
26
|
necomi |
⊢ 0 ≠ 3 |
28 |
6 25 27
|
umgrbi |
⊢ { 0 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
29 |
28
|
a1i |
⊢ ( ⊤ → { 0 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
30 |
|
1ne2 |
⊢ 1 ≠ 2 |
31 |
10 20 30
|
umgrbi |
⊢ { 1 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
32 |
31
|
a1i |
⊢ ( ⊤ → { 1 , 2 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
33 |
15 17
|
ltneii |
⊢ 2 ≠ 3 |
34 |
20 25 33
|
umgrbi |
⊢ { 2 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
35 |
34
|
a1i |
⊢ ( ⊤ → { 2 , 3 } ∈ { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
36 |
13 23 29 32 32 35 35
|
s7cld |
⊢ ( ⊤ → 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 ∈ Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
37 |
36
|
mptru |
⊢ 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 ∈ Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
38 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( 0 ... 3 ) |
39 |
38
|
rabeqi |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
40 |
39
|
wrdeqi |
⊢ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = Word { 𝑥 ∈ 𝒫 ( 0 ... 3 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
41 |
37 2 40
|
3eltr4i |
⊢ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |