Metamath Proof Explorer


Theorem konigsbergssiedgw

Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v 𝑉 = ( 0 ... 3 )
konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
Assertion konigsbergssiedgw ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )

Proof

Step Hyp Ref Expression
1 konigsberg.v 𝑉 = ( 0 ... 3 )
2 konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
3 konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
4 1 2 3 konigsbergssiedgwpr ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
5 wrdf ( 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
6 prprrab { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
7 2re 2 ∈ ℝ
8 7 eqlei2 ( ( ♯ ‘ 𝑥 ) = 2 → ( ♯ ‘ 𝑥 ) ≤ 2 )
9 8 a1i ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑥 ) = 2 → ( ♯ ‘ 𝑥 ) ≤ 2 ) )
10 9 ss2rabi { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
11 6 10 eqsstrri { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
12 fss ( ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
13 11 12 mpan2 ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
14 iswrdb ( 𝐴 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
15 13 14 sylibr ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐴 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )
16 4 5 15 3syl ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } )