Metamath Proof Explorer


Theorem konigsbergssiedgwpr

Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v 𝑉 = ( 0 ... 3 )
konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
Assertion konigsbergssiedgwpr ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )

Proof

Step Hyp Ref Expression
1 konigsberg.v 𝑉 = ( 0 ... 3 )
2 konigsberg.e 𝐸 = ⟨“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”⟩
3 konigsberg.g 𝐺 = ⟨ 𝑉 , 𝐸
4 1 2 3 konigsbergiedgw 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
5 4 jctr ( 𝐸 = ( 𝐴 ++ 𝐵 ) → ( 𝐸 = ( 𝐴 ++ 𝐵 ) ∧ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
6 ccatrcl1 ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ ( 𝐸 = ( 𝐴 ++ 𝐵 ) ∧ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
7 5 6 syl3an3 ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )