Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
⊢ 𝑉 = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ”〉 |
3 |
|
konigsberg.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
1 2 3
|
konigsbergiedgw |
⊢ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
5 |
4
|
jctr |
⊢ ( 𝐸 = ( 𝐴 ++ 𝐵 ) → ( 𝐸 = ( 𝐴 ++ 𝐵 ) ∧ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
6 |
|
ccatrcl1 |
⊢ ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ ( 𝐸 = ( 𝐴 ++ 𝐵 ) ∧ 𝐸 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
7 |
5 6
|
syl3an3 |
⊢ ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = ( 𝐴 ++ 𝐵 ) ) → 𝐴 ∈ Word { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |