Step |
Hyp |
Ref |
Expression |
1 |
|
konigth.1 |
⊢ 𝐴 ∈ V |
2 |
|
konigth.2 |
⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) |
3 |
|
konigth.3 |
⊢ 𝑃 = X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) |
4 |
|
konigth.4 |
⊢ 𝐷 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) |
5 |
|
konigth.5 |
⊢ 𝐸 = ( 𝑖 ∈ 𝐴 ↦ ( 𝑒 ‘ 𝑖 ) ) |
6 |
|
fvex |
⊢ ( 𝑀 ‘ 𝑖 ) ∈ V |
7 |
|
fvex |
⊢ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ∈ V |
8 |
|
eqid |
⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
9 |
7 8
|
fnmpti |
⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀 ‘ 𝑖 ) |
10 |
6
|
mptex |
⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ∈ V |
11 |
4
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐷 ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) |
12 |
10 11
|
mpan2 |
⊢ ( 𝑖 ∈ 𝐴 → ( 𝐷 ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) |
13 |
12
|
fneq1d |
⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ↔ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀 ‘ 𝑖 ) ) ) |
14 |
9 13
|
mpbiri |
⊢ ( 𝑖 ∈ 𝐴 → ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ) |
15 |
|
fnrndomg |
⊢ ( ( 𝑀 ‘ 𝑖 ) ∈ V → ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) → ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ) ) |
16 |
6 14 15
|
mpsyl |
⊢ ( 𝑖 ∈ 𝐴 → ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ) |
17 |
|
domsdomtr |
⊢ ( ( ran ( 𝐷 ‘ 𝑖 ) ≼ ( 𝑀 ‘ 𝑖 ) ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) |
19 |
|
sdomdif |
⊢ ( ran ( 𝐷 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) |
21 |
20
|
ralimiaa |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝐴 ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ ) |
22 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑖 ) ∈ V |
23 |
22
|
difexi |
⊢ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∈ V |
24 |
1 23
|
ac6c5 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ≠ ∅ → ∃ 𝑒 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) |
25 |
|
equid |
⊢ 𝑓 = 𝑓 |
26 |
|
eldifi |
⊢ ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) |
27 |
|
fvex |
⊢ ( 𝑒 ‘ 𝑖 ) ∈ V |
28 |
5
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑒 ‘ 𝑖 ) ∈ V ) → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
29 |
27 28
|
mpan2 |
⊢ ( 𝑖 ∈ 𝐴 → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ↔ ( 𝑒 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
31 |
26 30
|
syl5ibr |
⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
32 |
31
|
ralimia |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) |
33 |
27 5
|
fnmpti |
⊢ 𝐸 Fn 𝐴 |
34 |
32 33
|
jctil |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
35 |
1
|
mptex |
⊢ ( 𝑖 ∈ 𝐴 ↦ ( 𝑒 ‘ 𝑖 ) ) ∈ V |
36 |
5 35
|
eqeltri |
⊢ 𝐸 ∈ V |
37 |
36
|
elixp |
⊢ ( 𝐸 ∈ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ↔ ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝐸 ‘ 𝑖 ) ∈ ( 𝑁 ‘ 𝑖 ) ) ) |
38 |
34 37
|
sylibr |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → 𝐸 ∈ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ) |
39 |
38 3
|
eleqtrrdi |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → 𝐸 ∈ 𝑃 ) |
40 |
|
foelrn |
⊢ ( ( 𝑓 : 𝑆 –onto→ 𝑃 ∧ 𝐸 ∈ 𝑃 ) → ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) ) |
41 |
40
|
expcom |
⊢ ( 𝐸 ∈ 𝑃 → ( 𝑓 : 𝑆 –onto→ 𝑃 → ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) ) ) |
42 |
2
|
eleq2i |
⊢ ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ) |
43 |
|
eliun |
⊢ ( 𝑎 ∈ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) |
44 |
42 43
|
bitri |
⊢ ( 𝑎 ∈ 𝑆 ↔ ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) |
45 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) |
46 |
|
nfv |
⊢ Ⅎ 𝑖 𝐸 = ( 𝑓 ‘ 𝑎 ) |
47 |
45 46
|
nfan |
⊢ Ⅎ 𝑖 ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) |
48 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝑓 = 𝑓 |
49 |
29
|
ad2antrl |
⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝐸 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
50 |
|
fveq1 |
⊢ ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ( 𝐸 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
51 |
12
|
fveq1d |
⊢ ( 𝑖 ∈ 𝐴 → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) = ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) ) |
52 |
8
|
fvmpt2 |
⊢ ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ∧ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
53 |
7 52
|
mpan2 |
⊢ ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ( ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ↦ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
54 |
51 53
|
sylan9eq |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) = ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) |
55 |
54
|
eqcomd |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
56 |
50 55
|
sylan9eq |
⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝐸 ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
57 |
49 56
|
eqtr3d |
⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) = ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) |
58 |
|
fnfvelrn |
⊢ ( ( ( 𝐷 ‘ 𝑖 ) Fn ( 𝑀 ‘ 𝑖 ) ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
59 |
14 58
|
sylan |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
61 |
57 60
|
eqeltrd |
⊢ ( ( 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
62 |
61
|
3adant1 |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
63 |
|
simp1 |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) |
64 |
|
simp3l |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → 𝑖 ∈ 𝐴 ) |
65 |
|
rsp |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑖 ∈ 𝐴 → ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ) ) |
66 |
|
eldifn |
⊢ ( ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
67 |
65 66
|
syl6 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑖 ∈ 𝐴 → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) ) |
68 |
63 64 67
|
sylc |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ¬ ( 𝑒 ‘ 𝑖 ) ∈ ran ( 𝐷 ‘ 𝑖 ) ) |
69 |
62 68
|
pm2.21dd |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) ) → ¬ 𝑓 = 𝑓 ) |
70 |
69
|
3expia |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) ) → ¬ 𝑓 = 𝑓 ) ) |
71 |
70
|
expd |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( 𝑖 ∈ 𝐴 → ( 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ¬ 𝑓 = 𝑓 ) ) ) |
72 |
47 48 71
|
rexlimd |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( ∃ 𝑖 ∈ 𝐴 𝑎 ∈ ( 𝑀 ‘ 𝑖 ) → ¬ 𝑓 = 𝑓 ) ) |
73 |
44 72
|
syl5bi |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) ∧ 𝐸 = ( 𝑓 ‘ 𝑎 ) ) → ( 𝑎 ∈ 𝑆 → ¬ 𝑓 = 𝑓 ) ) |
74 |
73
|
ex |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ( 𝑎 ∈ 𝑆 → ¬ 𝑓 = 𝑓 ) ) ) |
75 |
74
|
com23 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑎 ∈ 𝑆 → ( 𝐸 = ( 𝑓 ‘ 𝑎 ) → ¬ 𝑓 = 𝑓 ) ) ) |
76 |
75
|
rexlimdv |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( ∃ 𝑎 ∈ 𝑆 𝐸 = ( 𝑓 ‘ 𝑎 ) → ¬ 𝑓 = 𝑓 ) ) |
77 |
41 76
|
syl9r |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝐸 ∈ 𝑃 → ( 𝑓 : 𝑆 –onto→ 𝑃 → ¬ 𝑓 = 𝑓 ) ) ) |
78 |
39 77
|
mpd |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ( 𝑓 : 𝑆 –onto→ 𝑃 → ¬ 𝑓 = 𝑓 ) ) |
79 |
25 78
|
mt2i |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
80 |
79
|
exlimiv |
⊢ ( ∃ 𝑒 ∀ 𝑖 ∈ 𝐴 ( 𝑒 ‘ 𝑖 ) ∈ ( ( 𝑁 ‘ 𝑖 ) ∖ ran ( 𝐷 ‘ 𝑖 ) ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
81 |
21 24 80
|
3syl |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ 𝑓 : 𝑆 –onto→ 𝑃 ) |
82 |
81
|
nexdv |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) |
83 |
6
|
0dom |
⊢ ∅ ≼ ( 𝑀 ‘ 𝑖 ) |
84 |
|
domsdomtr |
⊢ ( ( ∅ ≼ ( 𝑀 ‘ 𝑖 ) ∧ ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ) → ∅ ≺ ( 𝑁 ‘ 𝑖 ) ) |
85 |
83 84
|
mpan |
⊢ ( ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∅ ≺ ( 𝑁 ‘ 𝑖 ) ) |
86 |
22
|
0sdom |
⊢ ( ∅ ≺ ( 𝑁 ‘ 𝑖 ) ↔ ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
87 |
85 86
|
sylib |
⊢ ( ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
88 |
87
|
ralimi |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
89 |
3
|
neeq1i |
⊢ ( 𝑃 ≠ ∅ ↔ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
90 |
22
|
rgenw |
⊢ ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V |
91 |
|
ixpexg |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V → X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V ) |
92 |
90 91
|
ax-mp |
⊢ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ∈ V |
93 |
3 92
|
eqeltri |
⊢ 𝑃 ∈ V |
94 |
93
|
0sdom |
⊢ ( ∅ ≺ 𝑃 ↔ 𝑃 ≠ ∅ ) |
95 |
1 22
|
ac9 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ↔ X 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
96 |
89 94 95
|
3bitr4i |
⊢ ( ∅ ≺ 𝑃 ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑁 ‘ 𝑖 ) ≠ ∅ ) |
97 |
88 96
|
sylibr |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ∅ ≺ 𝑃 ) |
98 |
1 6
|
iunex |
⊢ ∪ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ∈ V |
99 |
2 98
|
eqeltri |
⊢ 𝑆 ∈ V |
100 |
|
domtri |
⊢ ( ( 𝑃 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑃 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑃 ) ) |
101 |
93 99 100
|
mp2an |
⊢ ( 𝑃 ≼ 𝑆 ↔ ¬ 𝑆 ≺ 𝑃 ) |
102 |
101
|
biimpri |
⊢ ( ¬ 𝑆 ≺ 𝑃 → 𝑃 ≼ 𝑆 ) |
103 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝑃 ∧ 𝑃 ≼ 𝑆 ) → ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) |
104 |
97 102 103
|
syl2an |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) ∧ ¬ 𝑆 ≺ 𝑃 ) → ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) |
105 |
82 104
|
mtand |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → ¬ ¬ 𝑆 ≺ 𝑃 ) |
106 |
105
|
notnotrd |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( 𝑀 ‘ 𝑖 ) ≺ ( 𝑁 ‘ 𝑖 ) → 𝑆 ≺ 𝑃 ) |