| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigth.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | konigth.2 | ⊢ 𝑆  =  ∪  𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 ) | 
						
							| 3 |  | konigth.3 | ⊢ 𝑃  =  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 ) | 
						
							| 4 |  | konigth.4 | ⊢ 𝐷  =  ( 𝑖  ∈  𝐴  ↦  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) | 
						
							| 5 |  | konigth.5 | ⊢ 𝐸  =  ( 𝑖  ∈  𝐴  ↦  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 6 |  | fvex | ⊢ ( 𝑀 ‘ 𝑖 )  ∈  V | 
						
							| 7 |  | fvex | ⊢ ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 )  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) )  =  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | 
						
							| 9 | 7 8 | fnmpti | ⊢ ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) )  Fn  ( 𝑀 ‘ 𝑖 ) | 
						
							| 10 | 6 | mptex | ⊢ ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) )  ∈  V | 
						
							| 11 | 4 | fvmpt2 | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) )  ∈  V )  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) | 
						
							| 12 | 10 11 | mpan2 | ⊢ ( 𝑖  ∈  𝐴  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ) | 
						
							| 13 | 12 | fneq1d | ⊢ ( 𝑖  ∈  𝐴  →  ( ( 𝐷 ‘ 𝑖 )  Fn  ( 𝑀 ‘ 𝑖 )  ↔  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) )  Fn  ( 𝑀 ‘ 𝑖 ) ) ) | 
						
							| 14 | 9 13 | mpbiri | ⊢ ( 𝑖  ∈  𝐴  →  ( 𝐷 ‘ 𝑖 )  Fn  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 15 |  | fnrndomg | ⊢ ( ( 𝑀 ‘ 𝑖 )  ∈  V  →  ( ( 𝐷 ‘ 𝑖 )  Fn  ( 𝑀 ‘ 𝑖 )  →  ran  ( 𝐷 ‘ 𝑖 )  ≼  ( 𝑀 ‘ 𝑖 ) ) ) | 
						
							| 16 | 6 14 15 | mpsyl | ⊢ ( 𝑖  ∈  𝐴  →  ran  ( 𝐷 ‘ 𝑖 )  ≼  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 17 |  | domsdomtr | ⊢ ( ( ran  ( 𝐷 ‘ 𝑖 )  ≼  ( 𝑀 ‘ 𝑖 )  ∧  ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) )  →  ran  ( 𝐷 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) )  →  ran  ( 𝐷 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 19 |  | sdomdif | ⊢ ( ran  ( 𝐷 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) )  →  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 21 | 20 | ralimiaa | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ∀ 𝑖  ∈  𝐴 ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 22 |  | fvex | ⊢ ( 𝑁 ‘ 𝑖 )  ∈  V | 
						
							| 23 | 22 | difexi | ⊢ ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∈  V | 
						
							| 24 | 1 23 | ac6c5 | ⊢ ( ∀ 𝑖  ∈  𝐴 ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ≠  ∅  →  ∃ 𝑒 ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 25 |  | equid | ⊢ 𝑓  =  𝑓 | 
						
							| 26 |  | eldifi | ⊢ ( ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝑒 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 27 |  | fvex | ⊢ ( 𝑒 ‘ 𝑖 )  ∈  V | 
						
							| 28 | 5 | fvmpt2 | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ( 𝑒 ‘ 𝑖 )  ∈  V )  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 29 | 27 28 | mpan2 | ⊢ ( 𝑖  ∈  𝐴  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑖  ∈  𝐴  →  ( ( 𝐸 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 )  ↔  ( 𝑒 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) ) | 
						
							| 31 | 26 30 | imbitrrid | ⊢ ( 𝑖  ∈  𝐴  →  ( ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) ) | 
						
							| 32 | 31 | ralimia | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ∀ 𝑖  ∈  𝐴 ( 𝐸 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 33 | 27 5 | fnmpti | ⊢ 𝐸  Fn  𝐴 | 
						
							| 34 | 32 33 | jctil | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝐸  Fn  𝐴  ∧  ∀ 𝑖  ∈  𝐴 ( 𝐸 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) ) | 
						
							| 35 | 1 | mptex | ⊢ ( 𝑖  ∈  𝐴  ↦  ( 𝑒 ‘ 𝑖 ) )  ∈  V | 
						
							| 36 | 5 35 | eqeltri | ⊢ 𝐸  ∈  V | 
						
							| 37 | 36 | elixp | ⊢ ( 𝐸  ∈  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ↔  ( 𝐸  Fn  𝐴  ∧  ∀ 𝑖  ∈  𝐴 ( 𝐸 ‘ 𝑖 )  ∈  ( 𝑁 ‘ 𝑖 ) ) ) | 
						
							| 38 | 34 37 | sylibr | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  𝐸  ∈  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 39 | 38 3 | eleqtrrdi | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 40 |  | foelrn | ⊢ ( ( 𝑓 : 𝑆 –onto→ 𝑃  ∧  𝐸  ∈  𝑃 )  →  ∃ 𝑎  ∈  𝑆 𝐸  =  ( 𝑓 ‘ 𝑎 ) ) | 
						
							| 41 | 40 | expcom | ⊢ ( 𝐸  ∈  𝑃  →  ( 𝑓 : 𝑆 –onto→ 𝑃  →  ∃ 𝑎  ∈  𝑆 𝐸  =  ( 𝑓 ‘ 𝑎 ) ) ) | 
						
							| 42 | 2 | eleq2i | ⊢ ( 𝑎  ∈  𝑆  ↔  𝑎  ∈  ∪  𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 43 |  | eliun | ⊢ ( 𝑎  ∈  ∪  𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ↔  ∃ 𝑖  ∈  𝐴 𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 44 | 42 43 | bitri | ⊢ ( 𝑎  ∈  𝑆  ↔  ∃ 𝑖  ∈  𝐴 𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 45 |  | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑖 𝐸  =  ( 𝑓 ‘ 𝑎 ) | 
						
							| 47 | 45 46 | nfan | ⊢ Ⅎ 𝑖 ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 ) ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ 𝑖 ¬  𝑓  =  𝑓 | 
						
							| 49 | 29 | ad2antrl | ⊢ ( ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝑒 ‘ 𝑖 ) ) | 
						
							| 50 |  | fveq1 | ⊢ ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  →  ( 𝐸 ‘ 𝑖 )  =  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | 
						
							| 51 | 12 | fveq1d | ⊢ ( 𝑖  ∈  𝐴  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 )  =  ( ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) ) | 
						
							| 52 | 8 | fvmpt2 | ⊢ ( ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ∧  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 )  ∈  V )  →  ( ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 )  =  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | 
						
							| 53 | 7 52 | mpan2 | ⊢ ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  →  ( ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  ↦  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 )  =  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | 
						
							| 54 | 51 53 | sylan9eq | ⊢ ( ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 )  =  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 ) ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) )  →  ( ( 𝑓 ‘ 𝑎 ) ‘ 𝑖 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) | 
						
							| 56 | 50 55 | sylan9eq | ⊢ ( ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( 𝐸 ‘ 𝑖 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) | 
						
							| 57 | 49 56 | eqtr3d | ⊢ ( ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( 𝑒 ‘ 𝑖 )  =  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 ) ) | 
						
							| 58 |  | fnfvelrn | ⊢ ( ( ( 𝐷 ‘ 𝑖 )  Fn  ( 𝑀 ‘ 𝑖 )  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 59 | 14 58 | sylan | ⊢ ( ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( ( 𝐷 ‘ 𝑖 ) ‘ 𝑎 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 61 | 57 60 | eqeltrd | ⊢ ( ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( 𝑒 ‘ 𝑖 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 62 | 61 | 3adant1 | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ( 𝑒 ‘ 𝑖 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 63 |  | simp1 | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 64 |  | simp3l | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  𝑖  ∈  𝐴 ) | 
						
							| 65 |  | rsp | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝑖  ∈  𝐴  →  ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 66 |  | eldifn | ⊢ ( ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ¬  ( 𝑒 ‘ 𝑖 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 67 | 65 66 | syl6 | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝑖  ∈  𝐴  →  ¬  ( 𝑒 ‘ 𝑖 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 68 | 63 64 67 | sylc | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ¬  ( 𝑒 ‘ 𝑖 )  ∈  ran  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 69 | 62 68 | pm2.21dd | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 )  ∧  ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) ) )  →  ¬  𝑓  =  𝑓 ) | 
						
							| 70 | 69 | 3expia | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 ) )  →  ( ( 𝑖  ∈  𝐴  ∧  𝑎  ∈  ( 𝑀 ‘ 𝑖 ) )  →  ¬  𝑓  =  𝑓 ) ) | 
						
							| 71 | 70 | expd | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 ) )  →  ( 𝑖  ∈  𝐴  →  ( 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  →  ¬  𝑓  =  𝑓 ) ) ) | 
						
							| 72 | 47 48 71 | rexlimd | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 ) )  →  ( ∃ 𝑖  ∈  𝐴 𝑎  ∈  ( 𝑀 ‘ 𝑖 )  →  ¬  𝑓  =  𝑓 ) ) | 
						
							| 73 | 44 72 | biimtrid | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  ∧  𝐸  =  ( 𝑓 ‘ 𝑎 ) )  →  ( 𝑎  ∈  𝑆  →  ¬  𝑓  =  𝑓 ) ) | 
						
							| 74 | 73 | ex | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  →  ( 𝑎  ∈  𝑆  →  ¬  𝑓  =  𝑓 ) ) ) | 
						
							| 75 | 74 | com23 | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝑎  ∈  𝑆  →  ( 𝐸  =  ( 𝑓 ‘ 𝑎 )  →  ¬  𝑓  =  𝑓 ) ) ) | 
						
							| 76 | 75 | rexlimdv | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( ∃ 𝑎  ∈  𝑆 𝐸  =  ( 𝑓 ‘ 𝑎 )  →  ¬  𝑓  =  𝑓 ) ) | 
						
							| 77 | 41 76 | syl9r | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝐸  ∈  𝑃  →  ( 𝑓 : 𝑆 –onto→ 𝑃  →  ¬  𝑓  =  𝑓 ) ) ) | 
						
							| 78 | 39 77 | mpd | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ( 𝑓 : 𝑆 –onto→ 𝑃  →  ¬  𝑓  =  𝑓 ) ) | 
						
							| 79 | 25 78 | mt2i | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ¬  𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 80 | 79 | exlimiv | ⊢ ( ∃ 𝑒 ∀ 𝑖  ∈  𝐴 ( 𝑒 ‘ 𝑖 )  ∈  ( ( 𝑁 ‘ 𝑖 )  ∖  ran  ( 𝐷 ‘ 𝑖 ) )  →  ¬  𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 81 | 21 24 80 | 3syl | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ¬  𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 82 | 81 | nexdv | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ¬  ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 83 | 6 | 0dom | ⊢ ∅  ≼  ( 𝑀 ‘ 𝑖 ) | 
						
							| 84 |  | domsdomtr | ⊢ ( ( ∅  ≼  ( 𝑀 ‘ 𝑖 )  ∧  ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 ) )  →  ∅  ≺  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 85 | 83 84 | mpan | ⊢ ( ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ∅  ≺  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 86 | 22 | 0sdom | ⊢ ( ∅  ≺  ( 𝑁 ‘ 𝑖 )  ↔  ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 87 | 85 86 | sylib | ⊢ ( ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 88 | 87 | ralimi | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ∀ 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 89 | 3 | neeq1i | ⊢ ( 𝑃  ≠  ∅  ↔  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 90 | 22 | rgenw | ⊢ ∀ 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ∈  V | 
						
							| 91 |  | ixpexg | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ∈  V  →  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ∈  V ) | 
						
							| 92 | 90 91 | ax-mp | ⊢ X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ∈  V | 
						
							| 93 | 3 92 | eqeltri | ⊢ 𝑃  ∈  V | 
						
							| 94 | 93 | 0sdom | ⊢ ( ∅  ≺  𝑃  ↔  𝑃  ≠  ∅ ) | 
						
							| 95 | 1 22 | ac9 | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ≠  ∅  ↔  X 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 96 | 89 94 95 | 3bitr4i | ⊢ ( ∅  ≺  𝑃  ↔  ∀ 𝑖  ∈  𝐴 ( 𝑁 ‘ 𝑖 )  ≠  ∅ ) | 
						
							| 97 | 88 96 | sylibr | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ∅  ≺  𝑃 ) | 
						
							| 98 | 1 6 | iunex | ⊢ ∪  𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ∈  V | 
						
							| 99 | 2 98 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 100 |  | domtri | ⊢ ( ( 𝑃  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝑃  ≼  𝑆  ↔  ¬  𝑆  ≺  𝑃 ) ) | 
						
							| 101 | 93 99 100 | mp2an | ⊢ ( 𝑃  ≼  𝑆  ↔  ¬  𝑆  ≺  𝑃 ) | 
						
							| 102 | 101 | biimpri | ⊢ ( ¬  𝑆  ≺  𝑃  →  𝑃  ≼  𝑆 ) | 
						
							| 103 |  | fodomr | ⊢ ( ( ∅  ≺  𝑃  ∧  𝑃  ≼  𝑆 )  →  ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 104 | 97 102 103 | syl2an | ⊢ ( ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  ∧  ¬  𝑆  ≺  𝑃 )  →  ∃ 𝑓 𝑓 : 𝑆 –onto→ 𝑃 ) | 
						
							| 105 | 82 104 | mtand | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  ¬  ¬  𝑆  ≺  𝑃 ) | 
						
							| 106 | 105 | notnotrd | ⊢ ( ∀ 𝑖  ∈  𝐴 ( 𝑀 ‘ 𝑖 )  ≺  ( 𝑁 ‘ 𝑖 )  →  𝑆  ≺  𝑃 ) |