| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							kqval.2 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  { 𝑦  ∈  𝐽  ∣  𝑥  ∈  𝑦 } )  | 
						
						
							| 2 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝐹  “  𝑈 )  ⊆  ran  𝐹  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐹  “  𝑈 )  ⊆  ran  𝐹 )  | 
						
						
							| 4 | 
							
								1
							 | 
							kqcldsat | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑈 ) )  =  𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqeltrd | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  𝑈 ) )  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							kqffn | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹  Fn  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							dffn4 | 
							⊢ ( 𝐹  Fn  𝑋  ↔  𝐹 : 𝑋 –onto→ ran  𝐹 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylib | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐹 : 𝑋 –onto→ ran  𝐹 )  | 
						
						
							| 10 | 
							
								
							 | 
							qtopcld | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 : 𝑋 –onto→ ran  𝐹 )  →  ( ( 𝐹  “  𝑈 )  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( ( 𝐹  “  𝑈 )  ⊆  ran  𝐹  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑈 ) )  ∈  ( Clsd ‘ 𝐽 ) ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpdan | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( ( 𝐹  “  𝑈 )  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( ( 𝐹  “  𝑈 )  ⊆  ran  𝐹  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑈 ) )  ∈  ( Clsd ‘ 𝐽 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( 𝐹  “  𝑈 )  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( ( 𝐹  “  𝑈 )  ⊆  ran  𝐹  ∧  ( ◡ 𝐹  “  ( 𝐹  “  𝑈 ) )  ∈  ( Clsd ‘ 𝐽 ) ) ) )  | 
						
						
							| 13 | 
							
								3 6 12
							 | 
							mpbir2and | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐹  “  𝑈 )  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							kqval | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( KQ ‘ 𝐽 )  =  ( 𝐽  qTop  𝐹 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( KQ ‘ 𝐽 )  =  ( 𝐽  qTop  𝐹 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( Clsd ‘ ( KQ ‘ 𝐽 ) )  =  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eleqtrrd | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐹  “  𝑈 )  ∈  ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )  |