Metamath Proof Explorer


Theorem kqcld

Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion kqcld ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 imassrn ( 𝐹𝑈 ) ⊆ ran 𝐹
3 2 a1i ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑈 ) ⊆ ran 𝐹 )
4 1 kqcldsat ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ ( 𝐹𝑈 ) ) = 𝑈 )
5 simpr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) )
6 4 5 eqeltrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ ( Clsd ‘ 𝐽 ) )
7 1 kqffn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 )
8 dffn4 ( 𝐹 Fn 𝑋𝐹 : 𝑋onto→ ran 𝐹 )
9 7 8 sylib ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋onto→ ran 𝐹 )
10 qtopcld ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto→ ran 𝐹 ) → ( ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝐹𝑈 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
11 9 10 mpdan ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝐹𝑈 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
12 11 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝐹𝑈 ) ⊆ ran 𝐹 ∧ ( 𝐹 “ ( 𝐹𝑈 ) ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
13 3 6 12 mpbir2and ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) )
14 1 kqval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )
15 14 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) )
16 15 fveq2d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( Clsd ‘ ( KQ ‘ 𝐽 ) ) = ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) )
17 13 16 eleqtrrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑈 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) )