| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
| 2 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 3 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 6 |
|
noel |
⊢ ¬ ( 𝐹 ‘ 𝑧 ) ∈ ∅ |
| 7 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 8 |
|
incom |
⊢ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 10 |
9
|
cldss |
⊢ ( 𝑈 ∈ ( Clsd ‘ 𝐽 ) → 𝑈 ⊆ ∪ 𝐽 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ ∪ 𝐽 ) |
| 12 |
|
fndm |
⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) |
| 13 |
2 12
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → dom 𝐹 = 𝑋 ) |
| 14 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 15 |
13 14
|
eqtrd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → dom 𝐹 = ∪ 𝐽 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 17 |
11 16
|
sseqtrrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ dom 𝐹 ) |
| 18 |
13
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom 𝐹 = 𝑋 ) |
| 19 |
17 18
|
sseqtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ 𝑋 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑈 ⊆ 𝑋 ) |
| 21 |
|
dfss4 |
⊢ ( 𝑈 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) = 𝑈 ) |
| 22 |
20 21
|
sylib |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) = 𝑈 ) |
| 23 |
22
|
imaeq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) = ( 𝐹 “ 𝑈 ) ) |
| 24 |
23
|
ineq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) ) |
| 25 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 26 |
14
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑋 = ∪ 𝐽 ) |
| 27 |
26
|
difeq1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑈 ) = ( ∪ 𝐽 ∖ 𝑈 ) ) |
| 28 |
9
|
cldopn |
⊢ ( 𝑈 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑈 ) ∈ 𝐽 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑈 ) ∈ 𝐽 ) |
| 30 |
27 29
|
eqeltrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) |
| 32 |
1
|
kqdisj |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ∅ ) |
| 33 |
25 31 32
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ∅ ) |
| 34 |
24 33
|
eqtr3d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) = ∅ ) |
| 35 |
8 34
|
eqtrid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) |
| 36 |
35
|
eleq2d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ∅ ) ) |
| 37 |
7 36
|
bitr3id |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ∅ ) ) |
| 38 |
6 37
|
mtbiri |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ¬ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 39 |
|
imnan |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 41 |
|
eldif |
⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝑈 ) ) |
| 42 |
41
|
baibr |
⊢ ( 𝑧 ∈ 𝑋 → ( ¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ) ) |
| 44 |
|
simpr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 45 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 46 |
25 31 44 45
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 47 |
43 46
|
bitrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ 𝑧 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 48 |
47
|
con1bid |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ↔ 𝑧 ∈ 𝑈 ) ) |
| 49 |
40 48
|
sylibd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → 𝑧 ∈ 𝑈 ) ) |
| 50 |
49
|
expimpd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 51 |
5 50
|
sylbid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 52 |
51
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ 𝑈 ) |
| 53 |
|
sseqin2 |
⊢ ( 𝑈 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) |
| 54 |
17 53
|
sylib |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) |
| 55 |
|
dminss |
⊢ ( dom 𝐹 ∩ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) |
| 56 |
54 55
|
eqsstrrdi |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ) |
| 57 |
52 56
|
eqssd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |